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The widespread code reuse allows vulnerabilities to proliferate among a vast variety of irmware. There is an urgent need

to detect these vulnerable code efectively and eiciently. By measuring code similarities, AI-based binary code similarity

detection is applied to detecting vulnerable code at scale. Existing studies have proposed various function features to capture

the commonality for similarity detection. Nevertheless, the signiicant code syntactic variability induced by the diversity

of IoT hardware architectures diminishes the accuracy of binary code similarity detection. In our earlier study and the tool

Asteria, we adopted a Tree-LSTM network to summarize function semantics as function commonality, and the evaluation
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result indicates an advanced performance. However, it still has utility concerns due to excessive time costs and inadequate

precision while searching for large-scale irmware bugs.

To this end, we propose a novel deep learning enhancement architecture by incorporating domain knowledge-based

pre-iltration and re-ranking modules, and develop a prototype named Asteria-Pro based on Asteria. The pre-iltration

module eliminates dissimilar functions, thus reducing the subsequent deep learning model calculations. The re-ranking

module boosts the rankings of vulnerable functions among candidates generated by the deep learning model. Our evaluation

indicates that the pre-iltration module cuts the calculation time by 96.9%, and the re-ranking module improves MRR and

Recall by 23.71% and 36.4%, respectively. By incorporating these modules, Asteria-Pro outperforms existing state-of-the-art

approaches in the bug search task by a signiicant margin. Furthermore, our evaluation shows that embedding baseline

methods with pre-iltration and re-ranking modules signiicantly improves their precision. We conduct a large-scale real-world

irmware bug search, and Asteria-Pro manages to detect 1,482 vulnerable functions with a high precision 91.65%.

CCS Concepts: · Security and privacy→ Software security engineering.

Additional Key Words and Phrases: Binary Code Similarity Detection, Pre-itering, Re-ranking, Abstract Syntactic Tree, Graph

Neural Network

1 INTRODUCTION

Code reuse is very popular in IoT irmware to facilitate its development [64]. Unfortunately, code reuse also
introduces vulnerabilities concealed in the original code into a variety of irmware [22]. The security and privacy
of our lives are seriously threatened by the widespread use of these irmware [65]. Even though the vulnerabilities
have been publicly disclosed, there are a large number of irmware versions that still contain them due to
delayed code upgrades or code compatibility issues [18]. Recurring vulnerabilities, often referred to as łN-day
vulnerabilitiesž, cannot be detected through symbol information such as function names because this type of
information is usually removed during irmware compilation. Additionally, the source code of irmware is typically
unavailable as IoT vendors only provide binary versions of their irmware.
To this end, binary code similarity detection (BCSD) is applied to quickly ind homologous vulnerabilities

in a large amount of irmware [23]. The BCSD technique focuses on determining the similarity between two
binary code pieces. As for the vulnerability search, BCSD looks for other vulnerable functions that are similar to
one that is already known to be vulnerable. In addition to the vulnerability search, BCSD has been widely used
for other security applications such as code plagiarism detection [16, 48, 57], malware detection [41, 42], and
patch analysis [28, 34, 63]. Despite many existing research eforts, the diversity of IoT hardware architectures
and software platforms poses challenges to BCSD for IoT irmware. There are many diferent instruction set
architectures (ISA) for IoT irmware, such as ARM, PowerPC, X64, and X86. The instructions are diferent, and
the rules, such as the calling convention and the stack layout, also difer across diferent ISAs. It is non-trivial to
ind homologous vulnerable functions across various architectures.
BCSD methods can be generally classiied into two categories: i) dynamic analysis-based methods and ii)

static analysis-based methods. The methods based on dynamic analysis capture the runtime behavior as function
semantic features by running target functions, where the function features can be I/O pairs of function [55] or
system calls during program execution [29], etc. They are not scalable for large-scale irmware analysis since
running irmware requires speciic devices and emulating irmware is also diicult [20, 35, 73]. The methods
based on static analysis mainly extract statistical features from assembly code. An intuitive way is to calculate
the edit distance between assembly code sequences [24]. They cannot be directly applied across architectures
since instruction sets are totally distinct. Architecture-independent statistical features of functions are proposed
for similarity detection [31]. These features are less afected across architectures such as the number of function
calls, strings, and constants. Furthermore, the control low graph (CFG) at the assembly code level is utilized by
conducting a graph isomorphism comparison for improving the similarity detection [31, 33]. Based on statistical
features and CFG, Gemini [66] leverages the graph embedding network to encode functions as vectors for
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similarity detection. With the application of deep learning models in programming language analysis, various
methods have recently appeared to employ such models to encode binary functions in diferent forms and
calculate function similarity based on function encoding [46, 50, 54, 62]. Static analysis-based methods are faster
and more scalable for large-scale irmware analysis but often produce false positives due to the lack of semantic
information. Since homologous vulnerable functions in diferent architectures usually have the same semantics, a
cross-architecture BCSD should be able to capture the semantic information about functions in a way that can be
scaled.
In our previous work Asteria [71], we irst utilized the Tree-LSTM network to encode the AST in an efort

to capture its semantic representation. In particular, Tree-LSTM is trained using a siamese [37] architecture
to understand the semantic representation by feeding homologous and non-homologous function pairs into
the Tree-LSTM network. Consequently, the Tree-LSTM network learns function semantic representations to
distinguish between homologous and non-homologous functions. To further improve the accuracy, we also use
the call graph to calibrate the AST similarity. Precisely, we count callee functions of target functions in the call
graph to measure the diference in function calls. The inal function similarity is determined by calibrating the
AST similarity with the disparity in function calls. In our previous evaluation, Asteria outperformed the available
state-of-the-art methods, Gemini and Diaphora, in terms of accuracy. The evaluation results demonstrate the
superiority of function semantic extraction by encoding AST with the Tree-LSTM model. However, encoding the
AST incurs a clear temporal cost for Asteria. According to our earlier research [71], the entire AST encoding
process takes about one second. When Asteria is applied to vulnerability detection, where there are numerous
functions to perform similarity calculations given a vulnerable function, the time cost becomes unacceptable. Since
the majority of candidate functions are non-homologous, there is room for enhancing the eiciency of Asteria. In
other words, non-homologous candidate functions difer from vulnerable functions in certain characteristics that
we can exploit to skip the majority of non-homologous functions more efectively. In addition, the evaluations do
not align with the approaches used in the majority of real-world vulnerability detection eforts [33, 45, 52, 66, 74],
including our prior study Asteria. Vulnerability detection involves retrieving homologous (vulnerable) functions
from a large pool of functions. Consequently, their performance in detecting vulnerabilities is insuiciently
described. It is necessary to evaluate the performance of Asteria on the vulnerability search task. Moreover,
according to the result in the real world vulnerability detection [71], Asteria sufers from high false positives,
which afects its efectiveness in reality.

There are two main challenges that hinder Asteria from being practical for large-scale vulnerability detection:

• Challenge 1 (C1). It’s challenging to ilter out the majority of non-homologous functions before encoding
ASTs, while retaining the homologous ones, to speed up the vulnerability-detection process.
• Challenge 2 (C2). It’s challenging to distinguish similar but non-homologous functions. Despite Asteria’s
high precision in homologous and non-homologous classiication, it still yields false positives when
distinguishing functions with similar ASTs.

We design Asteria-Pro by introducing domain knowledge as two answers, A1 and A2 to overcome these
two challenges. Our fundamental concept is that introducing inter-functional domain knowledge will helps
Asteria-Pro achieve greater precision combined the intra-functional semantic knowledge deep learning model
learned. Asteria-Pro consists of three modules: 1) domain knowledge-based (DK-based) pre-iltration, 2) deep
learning-based (DL-based) similarity detection, and 3) DK-based re-ranking, among them DL-based similarity
detection is basically based onAsteria. Domain knowledge is fully exploited for diferent purposes in DK-based pre-
iltration and re-ranking. In pre-iltration module, Asteria-Pro aims to skip as many as possible non-homologous
function by comparing lightweight robust features (A1). Meanwhile, iltration is required to retain all homologous
functions. To this end, we conducted a preliminary study into the iltering performance of several lightweight
function features. According to the indings of the study, we propose a novel algorithm that successfully employs
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three distinct function features in the ilter. In the re-ranking module, Asteria-Pro conirms the homology of
functions by comparing call relationships (A2), based on the assumption that functions designed for distinct
purposes have diferent call relationships.
Our evaluation indicates that Asteria-Pro signiicantly outperforms existing state-of-the-art methods in

terms of both accuracy and eiciency. Compared with Asteria, Asteria-Pro successfully cuts the detection
time of Asteria by 96.90% by incorporating DK-based pre-iltration module. In the vulnerability-search task,
Asteria-Pro has the shortest average search time than other baseline methods. By incorporating DK-based re-
ranking, Asteria-Pro manages to enhance the MRR and Recall@Top-1 by 23.71% and 36.4%, to 90.8% and 89.6%,
respectively. We have also applied our enhancement framework to embed baseline methods, and the evaluation
results demonstrate a signiicant improvement in the precision of these methods. Asteria-Pro identiies 1,482
vulnerable functions with a high precision of 91.65% by conducting a large-scale real-world irmware vulnerability
detection utilizing 90 CVEs. Moreover, the detection results of CVE-2017-13001 demonstrate that Asteria-Pro
has an advanced capacity to detect inlined vulnerable code.

Our contributions are summarized as follows:

• We conduct a preliminary study to demonstrate the efectiveness of various simple function features in
identifying non-homologous functions.
• To the best of our knowledge, it is the irst work to propose incorporating domain knowledge before and after
deep learning models for vulnerability detection optimization. We implement the domain knowledge-based
pre-iltration and re-ranking algorithms and equip Asteria with them.
• The evaluation indicates the pre-iltration module signiicantly reduces the detection time, and re-ranking
module improves the detection precision by a fairly amount. The Asteria-Pro outperforms existing state-
of-the-art methods in terms of both accuracy and eiciency. In evaluation 8.5, we ind that the performance
of distinct BCSD methods may vary widely in diferent usage scenarios.
• We demonstrate the utility of Asteria-Pro by conducting a large-scale, real-world irmware vulnerability
detection. Asteria-Pro manages to ind 1,482 vulnerable functions with a high precision of 91.65%. We
analyze the vulnerability distribution in widely-used software from various IoT vendors to illustrate our
inspiring indings.

2 BACKGROUND

We irst briely describe the AST structure adopted in this work, followed by a demonstration of the AST holding
a more stable structure than CFG across architectures. Then we introduce the Tree-LSTM model utilized in AST
encoding. Finally, the broad problem deinition for the application of BCSD to bug search is given.

2.1 Abstract Syntax Tree

void

histsizesetfn(UNUSED(p), long v)

{

    if (v< 1)

histsiz = 1;

    else

 histsiz = v;

    resizehistents();

}

block

if

le block block

var num asg asg

var num var var

return

call

num

Fig. 1. Source code of function histsizesetfn and the corresponding decompiled AST of x86 architecture.
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Table 1. Statements and Expressions in ASTs. We count the statements and expressions for nodes in ASTs ater the decom-
pilation by IDA Pro and list the common statements and expressions. This table can be extended if new statements or
expressions are introduced.

Node Type Label Note

Statement

if 1 if statement
block 2 instructions executed sequentially
for 3 for loop statement

while 4 while loop statement
switch 5 switch statement
return 6 return statement
goto 7 unconditional jump

continue 8 continue statement in a loop
break 9 break statement in a loop

Expression

asgs 10∼17
assignments, including assignment, assignment after or, xor, and, add, sub,
mul, div

cmps 18∼23
comparisons including equal, not equal, greater than, less than, greater
than or equal to, and less than or equal to.

ariths 24∼34
arithmetic operations including or, xor, addition, subtraction, multipli-
cation, division, not, post-increase, post-decrease, pre-increase, and pre-
decrease

other 34∼43
others including indexing, variable, number, function call, string, asm, and
so on.

2.1.1 AST Description. An AST is a tree representation of the abstract syntactic structure of code in the compila-
tion and decompilation processes. This work focuses on the ASTs extracted by decompiling binary functions.
Diferent subtrees in an AST correspond to diferent code scopes in the source code. Figure 1 shows a decompiled
AST corresponding to the source code of function histsizesetfn in zsh v5.6.2 on the left. The zsh is a popular
shell software designed for interactive use, and the function histsizesetfn sets the value of a parameter. The
lines connecting the source code and AST in Figure 1 show that a node in the AST corresponds to an expression
or a statement in the source code. A variable or a constant value is represented by a leaf node in AST. We group
nodes in an AST into two categories: i) statement nodes and ii) expression nodes according to their functionalities
shown in Table 1. Statement nodes control the function execution low while expression nodes perform various
calculations. Statement nodes include if, for, while, return, break and so on. Expression nodes include common
arithmetic operations and bit operations.

2.1.2 AST Structure Superiority. Both CFG and AST are structural representations of a function. The CFG of a
function contains the jump relationships between basic blocks that contain straight-line code sequences [38].
Though CFG has been used for similarity measurement in BCSD [31], David et al. [24] demonstrated that CFG
structures difer signiicantly across diferent architectures. We observe that AST shows better architectural
stability across architectures compared with CFG. It is because AST is generated from the machine-independent
intermediate presentations, which are disassembled from assemble instructions during the decompilation pro-
cess [21]. Figure 2 depicts the evolution of ASTs and CFGs for the x86 and ARM architectures, respectively. For
the CFGs from x86 to ARM, we observe that the number of basic blocks changes from 4 to 1, and the number of
assembly instructions has changed a lot. However, the ASTs, which are based on a higher-level intermediate
representation, difer very slightly between x86 and ARM, with the diferences highlighted by blue boxes. In
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block

if

le block block

var num asg asg

var num var var

return

call

num

block

if

gt block block

var num asg asg

var var var num

return

call

num

(a) AST for x86 platform (b) AST for ARM platform
sub esp, 0ch

mov eax, [esp+0ch+arg_4]

test eax, eax

jle short loc_809F187

mov ds:histsiz, eax loc_809F187:

mov ds:histsiz, 1

jmp short loc_809F17E

loc_809F17E:

call resizehistents

add esp, 0ch

retn

LDR R3, =histsiz

CMP R1, #0

MOVLER2, #1

STRGT R1, [R3]

STRLE R2, [R3]

B resizehistents

(c) CFG for x86 platform (d) CFG for ARM platform

Fig. 2. ASTs and CFGs of the function histsizesetfn under diferent architectures.

addition, AST maintains the semantics of functionality, making it an ideal structure for cross-platform similarity
detection.

2.2 Tree-LSTM Model

In natural language processing, Recursive Neural Networks (RNN) are widely applied and perform better than
Convolutional Neural Networks [72]. RNNs take sequences of arbitrary lengths as inputs considering that a
sentence can consist of any number of words. However, standard RNNs are not capable of handling long-term
dependencies due to the gradient vanishing and gradient exploding problems. As one of the variants of RNN, Long
Short-Term Memory (LSTM) [39] has been proposed to solve such problems. LSTM introduces a gate mechanism
including the input, forget, and output gates. The gates control the information transfer to avoid the gradient
vanishing and exploding (calculation details in Section ğ 6.1). Nevertheless, LSTM can only process sequence
input but not structured input. Tree-LSTM is proposed to process tree-structured inputs [59]. The calculation by
Tree-LSTM model is from the bottom up. For each non-leaf node in the tree, all information from child nodes is
gathered and used for the calculation of the current node. In sentiment classiication and semantic relatedness
tasks, Tree-LSTM performs better than a plain LSTM structure network. There are two types of Tree-LSTM
proposed in the work [60]: Child-Sum Tree-LSTM and Binary Tree-LSTM. Researchers have shown that Binary
Tree-LSTM performs better than Child-Sum Tree-LSTM [60]. Since the Child-Sum Tree-LSTM does not take into
account the order of child nodes, while the order of statements in AST relects the function semantics, we use the
Binary Tree-LSTM for our AST encoding.

2.3 Function Call Compilation Optimization

There are two main types of function call compilation optimization that can impact binary code similarity analysis:
function inline and intrinsic functions.

ACM Trans. Softw. Eng. Methodol.
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Function inline. Function inline is a compiler optimization technique where the code of a called function is
inserted directly into the calling function, rather than making a separate function call. This can improve program
performance by reducing the overhead of function calls and improving cache utilization. The decision to inline a
function is typically made by the compiler based on various factors such as function size, frequency of calls, and
available register space.
Intrinsic function. Intrinsic functions (also known as built-in functions) are special functions that are im-
plemented by the compiler itself and are mapped to a single instruction or a sequence of instructions in the
target architecture. These functions provide low-level access to the hardware and are used to implement various
low-level operations, such as arithmetic, bit manipulation, and memory access. Intrinsic functions are often used
in performance-critical code, where the use of low-level instructions can lead to signiicant speedups compared
to equivalent code written in a higher-level language.

3 PRELIMINARY STUDY
This study aims to assess and uncover accessible function features that are efective at identifying non-

homologous functions to guide our pre-iltration design. To evaluate the features, we prepare the code base and
incorporate a number of metrics (ğ 3.1). We focus primarily on evaluating and comparing prevalent conventional
features present in existing remarkable works (ğ 3.2).

3.1 Evaluation Benchmark

3.1.1 Dataset. To derive robust features, we compile a large collection of binaries from 184 open source software
(OSS), including widely used OpenSSL, FFmpeg, Binutils, etc. Since our tool aims to conduct similarity detection
across diferent architectures, we compile these open source software for four common architectures: X86, X64,
ARM, and PowerPC. In addition, we align the default compilation settings during compilation with real-world
usage. After compilation, numerous test binaries with łtestž or łbuildtestž as a preix or suix are generated to
test the software’s functionality. These test binaries are removed from the collection because 1) their functions
are simple and comprise only a few lines of code. 2) do not participate in the real execution of software function.
After removal, the binary collection retains 1,130 binaries, or 226 for each architecture.

We create a large dataset consisting of pairs of homologous and non-homologous functions based on their
function names. Function names are retained in the software after compilation, allowing us to construct the
dataset. To create homologous function pairs, we select binary functions with the same function names within
the same software. On the other hand, functions with diferent names were considered non-homologous. For
example, if function � is present in the source code, compilation would generate four versions of binary functions
for diferent instruction set architectures: ��86, ��64, ���� , and ���� . These variants of functions are considered
homologous to each other. We extract a total of 529,096 binary functions, comprising 132,274 unique functions
for each architecture. To avoid overitting in inal evaluation, we randomly selected 40,111 functions from each
architecture. Among them, we randomly chose � functions as source functions to evaluate the iltering capability
of diverse features. For each source function ��� , we constructed a pool of candidate functions consisting of�
randomly selected binary functions and three homologous functions of ��

�
. As a result, each source function ��

�

forms three homologous pairs and� non-homologous pairs.

3.1.2 Metrics. True positive rate (TPR) and false positive rate (FPR) are utilized to evaluate the iltering capa-
bility of various features. TPR demonstrates the feature’s capacity to retain homologous functions, while FPR
demonstrates its capacity to exclude non-homologous functions. In the subsequent iltering phase, our goal is to
identify features that can ilter out non-homologous functions as efectively as possible (low FPR) while maintaining

all homologous functions (very high TPR).
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For a source function ��
�
, all function pairs in candidate function pool are measured by various feature similarity

scores. The function pairs with similarity scores below a threshold value � are iltered. In the remaining function
pairs, the homologous function pairs are regarded as true positives �� while the non-homologous function pairs
are regarded as false positives �� . The following equations illustrate how we calculate these three metrics for
various features:

��� =

∑�
�=1��

�
�

3 × �
(1)

��� =

∑�
�=1 ���

� × (� × 4 − 4)
(2)

3.2 Candidate Features Evaluation

We aim to identify the most eicient and efective ilter features by evaluating existing features proposed in
previous studies and their variants. Based on the evaluation results, we select and improve candidate features to
meet the ilter requirements, which is to remove as many non-homologous functions as possible while retaining
all homologous ones.

3.2.1 Feature Selection. We gather basic features from prior research [31, 66, 67, 71] and categorize them into
two groups: CFG-family features and AST-family features.
The CFG-family features include four types of numeric features: the number of instructions (No. Instruction),

arithmetic instructions (No. Arithmetic), call instructions (No. Callee), and logical instructions (No. Logic), along
with two constant features: string constants (String Constant) and numeric constants (Numeric Constant) [31].
We also introduce a newly proposed feature called the named callee list (NCL) to capture the text sequence
information of callee functions that retain their function names due to dynamic linking. In particular, NCL is
designed to be a list of callee functions that are either imported or exported functions. These functions retain
their original names as they are used as identiiers to reference the functions in other parts of the code.
Since AST is necessary for model encoding calculation (ğ 6), we summarize three syntactic features as AST-

family features:

• No. AST Nodes: The number of AST nodes.
• AST Node Cluster : The number of diferent node types in the AST. For example, in Figure 1, the AST node
cluster is denoted as [����� : 3, � � : 1, ������ : 1, ���� : 1, ��� : 3, ����� : 2, ��� : 2, ��� : 4, �� : 1].
• AST Fuzzy Hash: We irst generate a node sequence by traversing the AST preorder. Then we apply the
fuzzy hash algorithm [44] to generate the fuzzy hash of the AST.

3.2.2 Feature Similarity Calculation. The format of features divides them into two types with distinct similarity
calculations: value type and sequence type. Value type features consist of No. Instruction, No. Arithmetic, No.
Logic, No. Callee, and No. AST nodes. Sequence type features consist of Numeric Constant, String Constant, AST
Node Cluster, AST Fuzzy Hash, and NCL. For value type features, we use the relative diference ratio (���) as
shown below for similarity calculation:

���(�1,�2) = 1 −
��� (�1 −�2)

��� (�1,�2)
(3)

where �1,�2 are feature values. For each sequence-type feature, we irst sort the feature’s items and then
concatenate them into a single sequence. Then, we employ the common sequence ratio (CSR) based on the longest
common sequence (LCS) as follows:

���(�1, �2) =
2 × ��� (�1, �2)

���(�1) + ���(�2)
(4)

ACM Trans. Softw. Eng. Methodol.
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Fig. 5. Time Costs of Similarity Calcula-
tion for Diferent Features.

where �1, �2 are feature sequences, and function ��� (·, ·) returns the length of the longest common sequence
between �1, �2. The above two equations are used for similarity calculation of various features.

3.2.3 Evaluation Results. In the evaluation, the values for� and� in ğ 3.1.2 are set to 1000 and 20, 000, respectively.
As depicted in Figure 3, TPRs and FPRs calculated for each feature under various thresholds are presented as
a receiver operating characteristic (ROC) [75] curve. Additionally, we compute the area under the ROC curve
(AUC), which relects the feature’s ability to distinguish between homologous and non-homologous functions.
The AUC values of the features extracted from AST (i.e., No. AST Nodes, AST Node Cluster, and AST Fuzzy Hash)
are high, as presented in the Figure 3. However, when the TPR is high, they generate a high FPR. Figure 5 depicts
the time costs associated with similarity calculations for various features. Clearly, sequence type features require
more time than value type features. Nonetheless, their time consumption falls within an acceptable range of
magnitudes. At least 105 exact calculations can be completed every second.

We observe in Figure 3 that at high TPR (0.996), the No. Callee feature produces a relatively lower FPR (0.111).
Recalling the requirement of the iltering phase, we aim to select features with a low FPR at a very high TPR.
Features with high AUC do not necessarily meet our objective. For example, the feature AST Node Cluster has a
higher FPR (0.47) than the feature No. Callee (FPR = 0.111) under the same TPR (0.996), even though the feature
AST Node Cluster has a higher AUC (0.978) than the feature No. Callee (AUC = 0.944). In this regard, we propose
a new metric, ������ , which indicates a high TPR and a lower FPR.

������ =
1

1
���
+ ���

(5)

Figure 4 plots the ������ curves of various features at diferent similarity thresholds. The results indicate that the
"NCL" feature has the highest ������ of 0.92 among all the candidate features. It achieves a high true positive rate
at a low false positive rate, with a relatively high AUC score of 0.963. The "No. Callee" feature performs slightly
worse, with an AUC score of 0.944 and an ������ of 0.902. The "String Constant" feature shows a relatively high
������ at a very low threshold (e.g., 0.01) since it decisively determines the homology of functions. In particular,
if two functions have the same strings, they are highly likely to be homologous. Although the ������ does not
increase as the threshold increases, it is because some functions do not include string constants, which limits the
number of true positive pairs. Based on the iltering performance of the candidate features, we have decided to
use NCL along with No. Callee and String Constant for our preiltering design.

ACM Trans. Softw. Eng. Methodol.
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Fig. 6. Workflow of Asteria-Pro. DK stands for Domain Knowledge. DL stands for Deep Learning.

4 METHODOLOGY OVERVIEW

Asteria-Pro consists of three primary modules: DK-based Preiltration, DL-based Similarity Calculation,
and DK-based Re-ranking, as shown in Figure 6. Here, DK stands for Domain Knowledge, and DL stands for
Deep Learning. The DK-based preiltration module utilizes syntactic features to ilter out dissimilar functions
from the candidate functions in a lightweight and eicient manner (see ğ 5). The DL-based similarity calculation
module encodes ASTs into representation vectors using the Tree-LSTM model and determines the similarity
score between the target function and the remaining functions using a Siamese network (see ğ 6). The DK-based
re-ranking module reorders the candidate homologous functions produced by the DL-based similarity calculation
module using lightweight structural features, such as the function call relationship. By integrating these three
modules, Asteria-Pro eiciently and efectively detects homologous functions across architectures.

5 DK-BASED PREFILTRATION

At this stage, Asteria-Pro aims to incorporate an eicient and efective ilter. To achieve this goal, we have
summarized the challenges associated with fully exploiting the NCL feature. Based on these challenges, we have
developed a novel algorithm that overcomes these obstacles and enables us to construct the ilter.

5.1 Exploitation Challenges

We have manually examined the false-negative cases where homologous functions were iltered out by both
the NCL and No. of callee features. Through this examination, we have identiied the challenges associated with
appropriately exploiting the NCL and No. of callee features to address these false-negative cases.

• Exploitation Challenge 1 (EC1). Decorated callee function name. A decorated callee function name
is the result of a function name being decorated by the compiler using various techniques [8]. One such
technique is name mangling, which is used by the C++ compiler to encode the function name with
additional information about its parameters and return type to facilitate function overloading. The name
of the function after decoration may difer from its original name in the source code and will be distinct
across diferent architectures, particularly X86 and X64, due to their difering return types.
• Exploitation Challenge 2 (EC2). In certain functions, commonly referred to as leaf nodes in a call graph,
there are no callee functions present. These functions are self-contained and do not call any other functions
within their code. As a result, the leaf nodes do not possess distinguishable NCL and No. of callee features.
• Exploitation Challenge 3 (EC3). Function calls in binary target functions might not always be consistent
with source code. Function calls may be added or deleted due to compiler optimization. The reasons for
the function call change are function inline, intrinsic function replacement, instruction replacement for
optimization, that behave diferently in diferent architectures. These challenges are introduced in ğ 2.3.

To overcome exploitation challenges, we improve feature ECL and propose a novel algorithm UpRelation.
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5.2 Definition of NCL

This section provides a formal deinition of NCL to enhance clarity and precision. NCL is built upon the call
graph of the software. The call graph �� can be deined by representing all functions as nodes and the call
relationships between them as edges: �� = (V, E), whereV = {� |� is a function} denotes the node collection
and E = {(�, �) |� calls �} denotes the edge collection. For any edge (�, �) ∈ E, we say that function � is a callee
function of function �. To facilitate linking, function names in the dynamic symbol table ��� (i.e., import and
export table) are preserved [36]. For instance, if a target function calls an external function such as ‘strcpy’, the
callee function name ‘strcpy’ remains in the import table, rather than being removed after binary stripping. The
NCL of a target function � is deined as ���� = {� |� ∈ V, � ∈ ��� (� , �) ∈ E, }, where � is sorted by its call
instruction address.
To address EC1, we employ two strategies to recover the original function names. Firstly, for C++ decorated

names, we use the recovery tool cxxilt [5] to recover the function names. Secondly, for other decorated functions,
we deine heuristic rules to recover the function names. For example, we recover the function call to ’_gets’ by
replacing it with ’gets’, by removing the underscore at the beginning. In cases where a function calls the same
function multiple times, we keep multiple identical function names.

5.3 Filtration algorithm

To address the additional two challenges, we propose a callee similarity-based algorithm called UpRelation. This
algorithm leverages context information in the call graph to overcome challenges EC2 and EC3. Speciically, the
algorithm utilizes parent nodes of leaf nodes in the call graph to match similar leaf nodes and address challenge
EC2. In the algorithm, we adopt a drill-down strategy that combines three features: NCL, No. Callee, and String

Constants, based on their information content. The No. Callee of function � is denoted by ������� , and the set of
String Constants for function � is denoted by �������� .

Given a vulnerable function �� , Algorithm 1 aims to eliminate most non-homologous functions while retaining
the vulnerable candidate functions in a list (���) from the target function list (���). The code from lines 2 to 6
performs iltering when the feature ���� � of �� is not empty. Speciically, the algorithm calculates the callee
similarity ratio (���) between ���� � and ���� of all candidate functions in line 4. It then ilters out functions
whose ��� is less than a threshold ���� . Similarly, when the number of callee functions (������� �) of �� is not
zero, the algorithm ilters out functions by calculating the Relevance Distance Ratio (���) score from line 7 to 11.
The most crucial portion of the algorithm is in lines 12 to 19, where it matches the leaf functions to address EC2.
All caller functions of �� are irst visited, and the algorithm employs���������� to discover all functions that are
similar to the caller function ������ in line 14. For each similar function ������ ′, the algorithm considers all its
callee functions as vulnerable candidate functions at line 16. Matching the same leaf functions by locating the
same caller functions introduces some extraneous (leaf) functions that share the same caller function but are not
the same as the leaf function. To remove these extraneous functions, the algorithm utilizes string similarity at
line 22. After iltering by callees and strings, the algorithm inally obtains the expected vulnerable candidate
function list ���.
Leaf Node Calculation Illustration.When the Strings, No. Callee, and NCL are non-empty, the similarity

calculation in our algorithm is straightforward. The arduous aspect of the algorithm lies in managing leaf
functions that do not call other functions. To provide a clearer illustration, we have employed an example depicted
in Figure 7 to demonstrate why homologous functions of leaf function �� are preserved after pre-iltration. In this
example, we presume that leaf function �� does not comprise any strings. The algorithm proceeds to lookup its
caller and collate its NCL as [��., ����., ��., ����.], where Ex. Func. is an abbreviation for ’Exported Function’,
and Im. Func. is an abbreviation for ’Imported Function’. Similarly, the algorithm collects the NCL of caller of � ′�
and attempts to correlate between the two NCLs. We postulate that homologous functions from the same software
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Algorithm 1: UpRelation

Input: Vulnerable Function � � , Target Function List ���, Thresholds ����,������� ,�������
Output: Vulnerable Candidate Function List ���

1 ��� ← ���;

2 if ���� � is not null then

3 for � ∈ ��� do

4 � = CSR(���� � , ���� );

5 if � < ���� then ���.pop(� );

6 end

7 else if ������� � > 0 then
8 for � ∈ ��� do

9 � = RDR(������� � , ������� );

10 if � < ������� then ���.pop(� );

11 end

12 else

13 ��′ = ∅;

14 for ������ ∈ GetCallers(fv) do

15 for ������ ′ ∈ ����������(������,� ��) do

16 ��′.add(GetCallees(������ ′));

17 end

18 end

19 ��� = ��′;

20 if �������� � is not null then

21 for � ∈ ��� do

22 � = CSR(�������� � , �������� );

23 if � < ������� then ���.pop(� );

24 end

25 else

26 return

27 end

28 ���;

have equivalent callers, signifying that caller functions ������ and ������ ′ invoke the same exported and imported
functions. Consequently, the NCL of two caller functions comprise the same elements [��., ����., ��., ����.].
Upon the successful correlation of the NCL of caller function ������ ′� , the algorithm preserves all its ofspring
nodes, encompassing � ′� , Im. Func., and Ex. Func., and eliminates all other functions. As a result, homologous
function � ′� of �� is conserved after pre-ilteration.

6 DL-BASED SIMILARITY CALCULATION

This module calculates the similarity between two function ASTs by encoding them into vectors and applying
the Siamese architecture to calculate similarity between encoded vectors. Figure 8 depicts the calculation low.
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6.1 Tree-LSTM Encoding

Given an AST, Tree-LSTM model encodes it into a representation vector. Tree-LSTM model is irstly proposed
to encode the tree representation of a sentence and summarize the semantic information in natural language
processing. Tree-LSTMmodel can preserve every property of the plain LSTM gating mechanisms while processing
tree-structured inputs. The main diference between the plain LSTM and the Tree-LSTM is the way to deal with
the outputs of predecessors. The plain LSTM utilizes the output of only one predecessor in the sequence input.
We utilize Tree-LSTM to integrate the outputs of all child nodes in the AST for calculation of the current node.
To facilitate the depiction of the Tree-LSTM encoding, we assume that node �� has two child nodes �� and �� .
The Tree-LSTM encoding of node �� takes three types of inputs: node embedding �� of �� , hidden states ℎ��
and ℎ�� , and cell states ��� and ��� as illustrated in Figure 8. The node embedding �� is generated by using the
pre-trained model CodeT5 to embed the node �� to a high-dimensional representation vector. ℎ�� , ℎ�� , ��� , and
��� are outputs from the encoding of child nodes. During the node encoding in Tree-LSTM, there are three gates
and three states which are important in the calculation. The three gates are calculated for iltering information to
avoid gradient explosion and gradient vanishing [59]. They are input, output, and forget gates. There are two
forget gates ��� and ��� , iltering the cell states from the left child node and right child node separately. As shown
in Node Encoding in Figure 8, the forget gates are calculated by combining ℎ�� , ℎ�� , and �� . Similar to the forget
gates, the input gate, and the output gate are also calculated by combining ℎ�� , ℎ�� , and �� . The details of the
three types of gates are as follows:

��� = � (� � �� + (�
�

��
ℎ�� +�

�

��
ℎ�� ) + �

� ) (6)
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��� = � (� � �� + (�
�

��
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�
��ℎ�� ) + �
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�
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�� = � (� ��� + (�
�
� ℎ�� +�

�
� ℎ�� ) + �

� ) (9)

where �� and �� denote the input gate and the output gate respectively, and the symbol � denotes the sigmoid
activation function. The weight matrix� , � , and bias � are diferent corresponding to diferent gates. After
the gates are calculated, there are three states �� , �� , and ℎ� in Tree-LSTM to store the intermediate encodings
calculated based on inputsℎ�� ,ℎ�� , and �� . The cached state�� combines the information from the node embedding
�� and the hidden states ℎ�� and ℎ�� (Equation 10). And note that �� utilizes tanh as the activation function rather
than ������� for holding more information from the inputs. The cell state �� combines the information from
the cached state �� and the cell states ��� and ��� iltered by forget gates (Equation 11). The hidden state ℎ� is
calculated by combining the information from cell state �� and the output gate �� (Equation 12). The three states
are computed as follows:

�� = ���ℎ(� ��� + (�
�
� ℎ�� +�

�
� ℎ�� ) + �

�) (10)

�� = �� ⊙ �� + (��� ⊙ ��� + ��� ⊙ ��� ) (11)

ℎ� = �� ⊙ ���ℎ(�� ) (12)

where the ⊙ means Hadamard product [40]. After the hidden state and input state are calculated, the encoding
of the current node �� is inished. The states �� and ℎ� will then be used for the encoding of �� ’s parent node.
During the AST encoding, Tree-LSTM encodes every node in the AST from bottom up as shown in Tree-LSTM

Encoding in Figure 8. After encoding all nodes in the AST, the hidden state of the root node is used as the
encoding of the AST.

6.2 Siamese Calculation

This step uses Siamese architecture that integrates two identical Tree-LSTM model to calculate similarity
between encoded vectors. The details of the Siamese architectureM(�1,�2) are shown in Figure 8. The Siamese
architecture consists of two identical Tree-LSTM networks that share the same parameters. In the process of
similarity calculation, the Siamese architecture irst utilizes Tree-LSTM to encode ASTs into vectors. We design
the Siamese architecture with subtraction and multiplication operations to capture the relationship between the
two encoding vectors. After the operations, the two resulting vectors are concatenated into a larger vector. Then
the resulting vector goes through a layer of softmax function to generate a 2-dimensional vector. The calculation
is deined as:

M(�1,�2) = �� � ���� (� (��� ( |N (�1) − N (�2) |,N(�1) ⊙ N (�2)) ×� ))) (13)

where� is a 2� × 2 matrix, the ⊙ represents Hadamard product [40], | · | denotes the operation of making
an absolute value, the function ��� (·) denotes the operation of concatenating vectors. The softmax function
normalizes the vector into a probability distribution. Since� is a 2� × 2 weight matrix, the output of Siamese
architecture is a 2× 1 vector. The format of output is [������������� �����, ���������� �����], where the irst value
represents the dissimilarity score and the second represents the similarity score. During the model training, the
input format of Siamese architecture is < �1,�2, ����� >. In our work, the label vector [1, 0] means �1 and �2 are
from non-homologous function pairs and the vector [0, 1] means homologous. The resulting vector and the label
vector are used for model loss and gradient calculation. During model inference, the second value in the output
vector is taken as the similarity of the two ASTs, and the similarity of ASTs is used in re-ranking.
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Fig. 9. The Re-ranking Motivation Example. In the rectangular box with dashed line are the top K candidate homologous
functions of �1 produced by the search (i.e., DL-based similarity detection). Solid line arrows indicate the function call

relationship (e.g., �1 calls �
�1
� ). The doted line arrows indicate the callee function match in re-ranking.

7 DK-BASED RE-RANKING

This module seeks to conirm the homology of the top k candidate functions output by the Tree-LSTM network
by re-ranking them. In the prior phase, the Tree-LSTM network infers the semantic information from the AST,
which is an intra-functional feature. The knowledge gained from the AST is insuicient to establish the homology
of functions. In this phase, function call relationships are used as domain knowledge to compensate for the lack of
knowledge regarding the inter-functional features of the Tree-LSTM. To this end, we design an algorithm called
Relational Structure Match. In contrast to the callee application in the pre-iltering module, this module uses
more extensive information from callee relationships to show the degree of homology of candidate functions.

7.1 Motivated Example

Our algorithm is based on a conforming observation to an intuitive law: If a function �1 calls function �
�1 , then

its homologous function � ′1 will also call the homologous function �� ′1 of ��1 . As depicted in Figure 9, we have

�1 calls �
�1 , and � ′1 calls �

� ′1 . Assume that the search process for �1 yields the top K functions containing the
target homologous function � ′1. We then employ the call relations of �1 and � ′1 to conduct precise callee function

matching for re-ranking. In particular, callee functions of �1 are divided into two categories, named callees ��1
�

and anonymous callees��1
� . For named callees, their names are utilized to match callees of functions between the

source function �1 and the candidate top K functions. For anonymous callees, we employ DL-based similarity
detection to calculate the similarity between callees of functions between the source function �1 and the candidate
top K functions. Recalling the observation, the homologous function � ′1 of �1 holds the most matched callees.
After re-ranking the candidate functions based on the matched callees, � ′1 is re-ranked in the irst place.

7.2 Relational Structure Match Algorithm

The algorithm aims to rescore each candidate function by leveraging the call relationship between the target
function and the candidate functions. The relational structure refers to the call relations between the target
function and all its callee functions, as illustrated in Section ğ 7.1. To match the relational structure, the algorithm
performs one of two distinct operations (�1 and�2) based on whether the source function has callee functions or
not.

�1: When the source function �1 has one or more callee functions, the algorithm extracts all callee functions of
�1 to build a mixed callee function set (MCFS). (details are described below). Using MCFS, the algorithm
calculates similarities between the target function and the candidate functions, resulting in new match
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scores. It re-ranks all candidate functions by combining the original Asteria scores (Equation 5) with
the newly calculated match scores. The details of MCFS and match score calculation are described in the
subsequent sections.

�2: When the source function �1 has no callee functions, the algorithm removes all candidate functions that
have one or more callee functions. The remaining candidate functions are then re-ranked based on their
original Asteria scores.

7.2.1 Mixed Callee Function Set. Themixed callee function set (MCFS) of function � consists of two types of callee
functions: named callee functions and anonymous callee functions. Named callee functions refer to functions
whose names have been preserved. These functions are typically imported or exported functions, and their
function names are necessary for external linking purposes. On the other hand, anonymous callee functions are a
type of function for which the function name has been removed for security reasons. These functions are typically
anonymized to protect sensitive information. We denote the MCFS of function � as ��� = ��

�1, ...,�
�
�� ,�

�
�1, ...,�

�
�� ,

where ��
�� represents a named callee function and ��

�� represents an anonymous callee function. The set ���
includes both types of callee functions for function � .

7.2.2 Match Score Calculation. The algorithm performs two types of matches to calculate the match score� for
each candidate function, utilizing the MCFSs of the target function �1 and all candidate functions.

Named Callee Match: For all named callees ��1
�� in ���1 , the algorithm matches them with the named callees

of each candidate function based on function names. If a named callee ��1
� in �1 has the same function name as a

named callee �
� ′1
� in a candidate function � ′1, they are considered a match. The number of matched functions in

candidate function �� is denoted as N��
� .

Anonymous Callee Match: For all anonymous callees ��1
�� in ���1 , the algorithm utilizes DL-based similarity

detection to calculate similarity scores between all anonymous callees of the target function and the anonymous

callees of all candidate functions. For each anonymous callee ���
�� in a candidate function �� , the algorithm

calculates the maximum similarity score between ���
�� and all anonymous callees of the target function. This

maximum similarity score is denoted as S��
�� .

After matching all callee functions of the candidate functions, the match score��� of candidate function �� is
calculated as follows:

��� = N
��
� +

︁

S
��
�� (14)

where S��
�� represents the similarity score between an anonymous callee ���

�� in candidate function �� and the

anonymous callees of the target function �� . The sum is taken over all anonymous callees in ���� , the MCFS of
candidate function �� .

7.2.3 Match Score-based Re-ranking. The re-ranking score of candidate function �� is obtained by combining the
match score��� and its DL-based similarity scoreM�� using Equation 15. The algorithm calculates a new score

���−������ for each candidate function �� as follows:

���−������
= � ×MF⟩ + � ×��� (15)

Here, � and � are weight coeicients that satisfy � + � = 1. The new score ���−������ combines the DL-based
similarity scoreM�� and the match score��� , emphasizing their importance according to the weights. A higher
re-ranking score indicates a higher degree of homology.
After calculating the re-ranking scores for all candidate functions, the algorithm sorts them in descending

order based on their new scores ���−����
��

. This ranking allows for the identiication of candidate functions with

higher homology, as those with higher scores are prioritized.
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8 EVALUATION

We aim to conduct a comprehensive practicality evaluation of various state-of-the-art function similarity detection
methods for bug search. To this end, we adopt 8 diferent metrics to depict the search capability of diferent
methods in a more comprehensive way. Furthermore, we construct a large evaluation dataset, in a way that is
closer to practical usage of bug search.

8.1 Research uestions

In the evaluation experiments, we aim to answer following research questions:

RQ1. How does Asteria-Pro compare to baseline methods in cross-architecture and cross-compiler function
similarity detection?

RQ2. What is the performance of Asteria-Pro, compared to baseline methods for bug search purpose?
RQ3. How much do DK-based iltration and DK-based re-ranking improves in accuracy and eiciency for

Asteria-Pro? How do their performance compare to other baseline methods when integrated together?
RQ4. How do diferent conigurable parameters afect the accuracy and eiciency?
RQ5. How does Asteria-Pro perform in a real-world bug search?

8.2 Implementation Details

We utilize IDA Pro 7.5 [10] and its plugin Hexray Decompiler to decompile binary code and extract ASTs. The
current version of the Hexray Decompiler supports x86, x64, PowerPC (PPC), and ARM architectures. For the
encoding of leaf nodes in Formulas (6)-(11), we assign zero vectors to the state vectors ℎ�� , ℎ�� , ��� , and ��� . During
model training, we use the binary cross-entropy loss function (BCELoss) to measure the discrepancy between
the labels and the predictions. The AdaGrad optimizer is utilized for gradient computation and weight-matrix
updating after the losses are computed. Due to the dependency of Tree-LSTM computation steps on the AST shape,
parallel batch computation is not possible. Therefore, the batch size is always set to 1. The model is trained for 60
epochs. Our experiments are conducted on a local server with two Intel(R) Xeon(R) CPUs E5-2620 v4 @ 2.10GHz,
each with 16 cores, 128GB of RAM, and 4TB of storage. The Asteria-Pro code runs in a Python 3.6 environment.
We compile the source code in our dataset using the gcc v5.4.0 compiler and utilize buildroot-2018.11.1 [3]
for dataset construction. We use the binwalk tool [2] to unpack irmware and obtain the binaries for further
analysis. In the UpRelation algorithm of the iltering module, we set the threshold values ����,������� ,�������
to 0.1, 0.8, and 0.8, respectively, based on their ������ . The crucial threshold ���� is discussed in ğ 8.8.1. In
Equation 15, we set � = 0.1 and � = 0.9 to emphasize the role of callee function similarities in the re-ranking
process. The sensitivity analysis of these weights is presented in ğ 8.8.2.

8.3 Comprehensive Benchmark

To compare BCSDmethods in a comprehensive way, we build an extensive benchmark based on multiple advanced
works [51, 62, 66]. The benchmark comprises of two datasets, two detection tasks, and ive measure metrics.

8.3.1 Dataset. The functions not involved in the preiltering test (see ğ 3) are divided into two datasets for model
training and testing and evaluation. The evaluation dataset consists of two sub-datasets, each of which is used
for a diferent detection task.

Model Dataset Construction. The model dataset is constructed for training and testing the Tree-LSTMmodel.
It consists of a total of 31,940 functions extracted from 1,944 distinct binaries. From these functions, 314,852 pairs
of homologous functions and 314,852 pairs of non-homologous functions are created. To ensure a fair evaluation
of the model’s performance, the dataset is divided into a training set and a testing set using an 8:2 ratio. This
means that 80% of the function pairs are used for training the model, while the remaining 20% are used for testing
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and evaluating the model’s performance. The dataset construction allows the Tree-LSTM model to learn and
generalize from a diverse set of functions, including both homologous and non-homologous pairs. By dividing
the dataset into training and testing sets, the model’s performance can be assessed on unseen data to measure its
efectiveness in identifying homologous functions.
Evaluation Dataset Construction. The dataset construction process involves creating two sub-datasets:

the g-dataset and the v-dataset. These datasets are used for diferent evaluation tasks: classiication test and
bug search test. The g-dataset is constructed for the classiication test, which evaluates the model’s ability to
classify homologous and non-homologous function pairs. It consists of tuples in the form (�, (�ℎ, ��)), where �
is the source function and (�ℎ, ��) represents a function set containing a homologous function �ℎ and a non-
homologous function �� . Each tuple in the g-dataset represents a pair of functions to be classiied as homologous
or non-homologous. On the other hand, the v-dataset is constructed for the bug search test, which evaluates
the model’s ability to identify non-homologous functions among a larger set of candidates. The tuples in the
v-dataset are of the form (�, (�ℎ, ��1, ..., ��� , ..., ��10000)). Here, �ℎ represents a homologous function, and ��1 to
��10000 represent non-homologous functions. In this case, the ���� contains a larger number of non-homologous
functions to simulate the bug search scenario. For both datasets, the source function � is matched with all the
functions in the ���� for evaluation. The g-dataset focuses on evaluating the model’s accuracy in classifying
homologous and non-homologous pairs, while the v-dataset assesses the model’s performance in identifying
non-homologous functions among a larger pool of candidates.

8.3.2 Metrics. We choose ive distinct metrics for comprehensive evaluation from earlier works [54, 62, 71]. In
our evaluation, the similarity of a function pair is calculated as a score of � . Assuming the threshold is � , if the
similarity score � of a function pair is greater than or equal to � , the function pair is regarded as a positive result,
otherwise a negative result. For a homologous pair, if its similarity score � is greater than or equal to � , it is a
true positive (TP). If a similarity score of � is less than � , the calculation result is a false negative (FN). For a
non-homologous pair, if a similarity score � is greater than or equal to � , it is a false positive (FP). When the
similarity score � is less than � , it is a true negative (TN). These metrics are described as following:

• TPR. TPR is short for true positive rate. TPR shows the accuracy of homologous function detection at
threshold � . It is calculated as ��� =

��
��+��

.
• FPR. FPR is short for false positive rate. FPR shows the accuracy of non-homologous function detection at
threshold � . It is calculated as ��� =

��
��+��

.
• AUC. AUC is short for area under the curve, where the curve is termed Receiver Operating Characteristic
(ROC) curve. The ROC curve illustrates the detection capacity of both homologous and non-homologous
functions as its discrimination threshold � is varied. AUC is a quantitative representation of ROC.
• MRR. MRR is short for mean reciprocal rank, which is a statistic measure for evaluating the results of
a sample of queries, ordered by probability of correctness. It is commonly used in retrieval experiments.
In our bug retrieval-manner evaluation, it is calculated as ��� =

1
|���� |

∑

�ℎ� ∈����
1

�����ℎ�
, where �����ℎ�

denotes the rank of function �ℎ� in pairing candidate set ���� , and |���� | denotes the size of ���� .
• Recall@Top-k. It shows the capacity of homologous function retrieve at top k detection results. The top k
results are regarded as homologous functions (positive). It is calculated as follows:

�(�) =

{

1 if � = ����

0 if � = �����

������@� =

1

|� |

︁

�(����
�
��
�
≤ �)

To demonstrate the reliability of the ranking results, we adopt Recall@Top-1 and Recall@Top-10.
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8.3.3 Detection Tasks. The two function similarity detection tasks based on BCSD applications are as follows:
Task-C (Classiication Task): This task focuses on evaluating the ability of methods to classify function pairs as

either homologous or non-homologous. It involves performing binary classiication on the g-dataset, which
contains tuples of the form (�, (�ℎ, ��)), where �ℎ represents a homologous function and �� represents a non-
homologous function. The task evaluates the performance using three metrics: TPR, FPR, and AUC of the ROC
curve. TPR and FPR are commonly used to measure the performance of binary classiication models, while AUC
provides an overall measure of the model’s discriminative ability.
Task-V (Bug/Vulnerability Search Task): This task focuses on evaluating the ability of methods to identify

homologous functions from a large pool of candidate functions. It uses the v-dataset, which contains tuples
of the form (�, (�ℎ, ��1, ..., ��� , ..., ��10000)), where �ℎ represents a homologous function and ��� represents non-
homologous functions. The task involves calculating function similarity between a source function � and all
functions in the ���� . The functions in ���� can then be sorted based on similarity scores. The task evaluates the
performance using three metrics: MRR, Recall@Top-1, and Recall@Top-10. MRR measures the rank of the irst
correctly identiied homologous function, while Recall@Top-1 and Recall@Top-10 measure the proportion of
cases where the correct homologous function is included in the top-1 and top-10 rankings, respectively.
These tasks provide a comprehensive evaluation of the methods’ performance in distinguishing between

homologous and non-homologous functions and identifying homologous functions from a large pool of candidates.

8.4 Baseline Methods.

We choose various representative cross-architectural BCSD works, that make use of AST or are built around deep
learning encoding. These BCSD works consist of Diaphora [7], Gemini [66], SAFE [52], and Trex [54]. Moreover,
we also use our previous conference work Asteria as one of baseline methods. We go over these works in more
details below.

Diaphora. Diaphora performs similarity detection also based on AST. Diaphora maps nodes in an AST to
primes and calculates the product of all prime numbers. Then it utilizes a diference function to calculate the
similarity between the prime products. We download the Diaphora source code from github [7], and extract
Diaphora’s core algorithm for AST similarity calculation for comparison. Noting that it would take a signiicant
amount of time (several minutes) to compute a pair of functions with extremely dissimilar ASTs, we add a iltering
computation before the prime diference. The iltering calculates the AST size diference and eliminates function
pairs with a signiicant size diference. We publish the improved Diaphora source code on our website [1].

Gemini. Gemini encodes ACFGs (attributed CFGs) into vectors with a graph embedding neural network. The
ACFG is a graph structure where each node is a vector corresponding to a basic block. We have obtained Gemini’s
source code and its training dataset. Notice that in [66] authors mentioned it can be retrained for a speciic task,
such as the bug search. To obtain the best accuracy of Gemini, we irst use the given training dataset to train the
model to achieve the best performance. Then we re-train the model with the part of our training dataset. Gemini

supports similarity detection on X86, MIPS, and ARM architectures.

SAFE. SAFE works directly on disassembled binary functions, does not require manual feature extraction, is
computationally more eicient than Gemini. In their vulnerability search task, SAFE outperforms Gemini in terms
of recall. SAFE supports three diferent instruction set architecture X64, X86, and ARM. We retrain SAFE based
on the oicial code [52] and use retrained model parameter for our test. In particular, we select all appropriate
function pairs from the training dataset, whose instruction set architectures are supported by SAFE. Then we
extract the function features for all function pairs selected and discard the function pairs whose features SAFE
cannot extract. After feature extraction, 27,580 function pairs of three distinct architecture combinations (i.e.,
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Fig. 10. ROC Curves on All Cross-architecture Combination Detection.

X86-X64, X86-ARM, and X64-ARM) are obtained for training. Next, We adopt the default model parameters (e.g.,
embedding size) and training setting (e.g. training epoches) to train SAFE.

Trex. Trex is based on pretrained model [54] of the state-of-the-art NLP technique, and micro-traces. It utilizes
a dynamic component to extract micro-traces and use them to pretrain a masked language model. Then it
integrates pretrained ML model into a similarity detection model along with the learned semantic knowledge
from micro-traces. It supports similarity detection of ARM, MIPS, X86, and X64.

8.5 Comparison of Similarity Detection Accuracy (RQ1)

In the evaluation of cross-architecture scenarios, the focus was on assessing the detection capability of diferent
approaches in two tasks separately, which is commonly encountered in vulnerability search scenarios. Additionally,
the evaluation also considered the performance in cross-compiler scenarios involving three diferent combinations
of compilers: gcc-clang, gcc-icc, and clang-icc.

8.5.1 Cross-Architecture Evaluation. In the evaluation of the two distinct tasks, it is important to note that the
baseline methods may not be capable of detecting function similarities for all four instruction set architectures.
As a result, the detection results for certain architecture combinations may be empty, indicating that the baseline
methods were unable to provide any meaningful results. For each task, the evaluation measured the performance
of various approaches in terms of the deined metrics. The speciic outcomes and results of the evaluation for
each task were analyzed and discussed.

Comparison on task-C. In Task-C, all approaches were evaluated by conducting similarity detection on all
supported architectural combinations. The evaluation results were used to calculate the three metrics (TPR, FPR,
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Table 2. AUCs in Task-C.

Methods X86-ARM X86-X64 X86-PPC ARM-X64 ARM-PPC X64-PPC Average

Asteria-Pro 0.996 0.998 0.995 0.998 0.998 0.999 0.997

Asteria 0.995 0.998 0.998 0.995 0.998 0.999 0.997
Gemini 0.969 0.984 0.984 0.973 0.968 0.984 0.977
SAFE 0.851 0.867 - 0.872 - - 0.863
Trex 0.794 0.891 - 0.861 - - 0.849

Diaphora 0.389 0.461 0.397 0.388 0.455 0.400 0.415

and AUC) for each approach. These results are presented in Table 2 and visualized in Figure 10, where each
subplot represents the ROC curve for a speciic architecture combination. The x-axis represents the FPR (False
Positive Rate), and the y-axis represents the TPR (True Positive Rate). By examining the ROC curves in Figure 10,
it can be observed that methods with performance curves closer to the upper-left corner generally exhibit
superior performance. In particular, the ROC curves of Asteria-Pro and Asteria are almost indistinguishable
across all architectural combinations, indicating that they possess equivalent classiication performance in
Task-C. Furthermore, the AUC values presented in Table 2 provide a quantitative measure of the approaches’
ability to distinguish between homologous and non-homologous functions. It is noted that Asteria-Pro and
Asteria demonstrate nearly identical performance in this regard. However, the AUC values of Asteria-Pro
are consistently greater than those of the other baseline techniques for all architectural combinations. This
suggests that Asteria-Pro exhibits superior discriminative capability between homologous and non-homologous
functions in Task-C. These indings highlight the strong performance of Asteria-Pro in the classiication task
and its ability to outperform the baseline methods in distinguishing between homologous and non-homologous
functions across various architecture combinations.

Table 3. MRR and Recall of Diferent Methods.

Metrics Methods X86-X64 X86-ARM X86-PPC X64-ARM X64-PPC ARM-PPC Avg

Asteria-Pro 0.934 0.887 0.931 0.879 0.919 0.903 0.908

Asteria 0.776 0.724 0.731 0.708 0.713 0.750 0.734
Trex 0.414 0.206 - 0.309 - - 0.310
Gemini 0.478 0.250 0.325 0.336 0.357 0.256 0.334
Safe 0.029 0.007 - 0.009 - - 0.015

MRR

Diaphora 0.023 0.019 0.020 0.019 0.020 0.021 0.020

Asteria-Pro 0.917 0.868 0.912 0.879 0.899 0.903 0.896

Asteria 0.706 0.648 0.652 0.627 0.631 0.675 0.657
Trex 0.274 0.110 - 0.192 - - 0.192
Gemini 0.405 0.180 0.242 0.261 0.279 0.229 0.266
Safe 0.004 0.002 - 0.002 - - 0.003

Recall@Top-1

Diaphora 0.021 0.016 0.017 0.016 0.017 0.018 0.018

Asteria-Pro 0.961 0.921 0.962 0.913 0.952 0.932 0.940

Asteria 0.902 0.867 0.882 0.857 0.866 0.890 0.877
Trex 0.710 0.452 - 0.575 - - 0.579
Gemini 0.615 0.383 0.482 0.478 0.502 0.468 0.488
Safe 0.022 0.010 - 0.014 - - 0.015

Recall@Top-10

Diaphora 0.029 0.024 0.026 0.026 0.025 0.027 0.026

Comparison on task-V. Table 3 presents the results of calculating MRR, Recall@Top-1, and Recall@Top-10
for diferent architectural combinations. These metrics evaluate the performance of the methods in the bug
(vulnerability) search task. Recall@Top-1 measures the ability to accurately detect homologous functions, while
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Recall@Top-10 assesses the capability to rank homologous functions within the top ten positions. In the table,
the irst column represents the metrics, and the second column lists the names of the methods. The third through
eighth columns display the metric values for the diferent architectural combinations, while the last column
shows the mean value across all architectures. It can be observed that Asteria-Pro and Asteria consistently
outperform the baseline approaches by a signiicant margin across all architecture conigurations. Asteria-Pro
achieves an impressive average MRR of 0.908, indicating a substantial improvement of up to 23.71% compared to
Asteria. Even after retraining, Safe demonstrates poor performance in properly recognizing small functions. In
terms of Recall@Top-1, both Asteria-Pro and Asteria achieve relatively high average precisions of 0.89 and
0.65, respectively, which are 237% and 146% higher than the best result (0.26). Notably, Asteria-Pro shows a
36.4% improvement in Recall@Top-1 compared to Asteria. Regarding Recall@Top-10, both Asteria-Pro and
Asteria continue to exhibit superior performance compared to the other methods. While other methods show a
signiicant increase in recall compared to Recall@Top-1, their values remain below Asteria-Pro. Overall, these
results demonstrate that Asteria-Pro outperforms the baseline methods, including Asteria, in terms of MRR,
Recall@Top-1, and Recall@Top-10 across diferent architecture combinations. The recall of other methods, such
as Trex, increases signiicantly from Recall@Top-1 to Recall@Top-10, indicating their ability to rank homologous
sequences more accurately. However, they still fall short compared to Asteria-Pro.
Indeed, the performance of BCSD approaches can vary signiicantly between diferent evaluation tasks, as

demonstrated by the diferences in Task-V performance compared to the similar ROC curve performance in
Task-C. In the case of Gemini, despite having a high AUC score similar to Asteria, its MRR performance is
relatively poor compared to both Asteria and Asteria-Pro. This indicates that evaluating BCSD approaches
in a single experiment setting, such as Task-C, may not provide a comprehensive understanding of their real-
world applicability and behavior. Task-V, which focuses on bug (vulnerability) search, simulates the scenario of
identifying homologous functions from a pool of candidate functions. In this task, the ability to accurately rank
and identify homologous functions becomes crucial. While ROC curves and AUC scores provide information
about the ability to discriminate between homologous and non-homologous functions, they may not relect the
performance in ranking and retrieving homologous functions accurately. Therefore, it is important to consider
multiple evaluation tasks, such as Task-C and Task-V, to assess the overall performance and efectiveness of
BCSD approaches. The results obtained from diferent tasks can provide a more comprehensive understanding of
the strengths and limitations of each method and their suitability for real-world applications.

False Positive Analysis. The false positive outcomes of Asteria-Pro can be attributed to two primary causes:
Cause 1: Similar Syntactic Structures of Proxy Functions - Proxy functions exhibit similar syntactic structures,

which can lead to similar semantics. This can make it challenging for Asteria-Pro to diferentiate between proxy
functions since their semantics are alike. Figure 11 provides an illustration of two proxy functions that difer
only on line 9. Due to their similar semantics, it becomes diicult to conirm the actual callees, especially when
symbols are lacking or when indirect jump tables are involved.
Cause 2: Compiler-Speciic Intrinsic Functions - Compilers for diferent architectures utilize various intrinsic

functions, which substitute libc function calls with optimized assembly instructions. For example, the gcc-X86
compiler may replace the memcpy function with several memory operation instructions that are speciic to the
architecture. As a result, the memcpy function may be absent from the list of callee functions used by Asteria’s
iltering and re-ranking modules. This lack of complete callee function information can lead to a loss of precision
in the scoring calculation.

Both causes contribute to the false positive outcomes in Asteria-Pro, highlighting the challenges in accurately
detecting function similarity across diferent architectures and handling variations in compilers’ optimization
techniques. Addressing these causes and improving the precision of function similarity detection in such scenarios
is an ongoing area of research and development in the ield of BCSD.

ACM Trans. Softw. Eng. Methodol.



Asteria-Pro: Enhancing Deep-Learning Based Binary Code Similarity Detection by Incorporating Domain Knowledge • 23

1 CK_RV proxy_C_DigestInit(...){

2 /*

3 Variable Initialization.

4 */

5 v5 = (Proxy *)self [1].

C_GetSlotInfo;

6 v7 = handle;

7 result =

map_session_to_real(v5

,&v7 ,&map ,V3);

8 if (! result)

9 result = map.funcs ->C_

DigestInit(v7,

mechanism);

10 return result;

11 }

1 CK_RV proxy_C_DigestKey(...){

2 /*

3 Variable Initialization.

4 */

5 v5 = (Proxy *)self [1].

C_GetSlotInfo;

6 v7 = handle;

7 result =

map_session_to_real(v5

,&v7 ,&map ,V3);

8 if (! result)

9 result = map.funcs ->C_

DigestKey(v7,

mechanism);

10 return result;

11 }

Fig. 11. Two Proxy Functions with only distinctions highlighted in red

Table 4. Cross-compiler Evaluation Results.

Metrics Methods gcc-clang gcc-icc clang-icc Avg.

MRR

Asteria-Pro 0.755 0.560 0.564 0.626

Asteria 0.624 0.319 0.328 0.424
Trex 0.148 0.063 0.093 0.101
Gemini 0.234 0.121 0.080 0.145
Safe 0.058 0.187 0.076 0.107
Diaphora 0.727 0.370 0.384 0.494

Recall@Top-1

Asteria-Pro 0.694 0.479 0.486 0.553

Asteria 0.541 0.244 0.256 0.347
Trex 0.099 0.031 0.040 0.057
Gemini 0.164 0.079 0.048 0.097
Safe 0.027 0.152 0.031 0.070
Diaphora 0.662 0.312 0.330 0.435

Recall@Top-10

Asteria-Pro 0.864 0.706 0.711 0.760

Asteria 0.783 0.466 0.469 0.573
Trex 0.257 0.124 0.075 0.152
Gemini 0.368 0.196 0.137 0.234
Safe 0.101 0.239 0.149 0.163
Diaphora 0.844 0.476 0.497 0.606

8.5.2 Cross-Comiler Evaluation. In the cross-compiler evaluation, we conducted experiments using three diferent
compilers: gcc, icc (Version 2021.1 Build 20201112_000000), and clang (10.0.0), all for the x86 architecture. The
evaluation results are presented in Table 4. We evaluated the performance of diferent methods using metrics
such as MRR and Recall in the three cross-compiler settings: gcc-clang, gcc-icc, and clang-icc. The average values
for all three settings are also provided in the last column of the table. Our new tool, Asteria-Pro, consistently
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outperforms the baseline methods by signiicant margins across all three compiler combinations. Compared to
Asteria, Asteria-Pro achieves an average improvement of 47.6% in MRR and Recall, demonstrating its superior
performance. The improvements compared to other baseline tools such as Trex, Gemini, Safe, and Diaphora are
even more substantial, with average improvements of 596.6%, 331.7%, 485.0%, and 26.7%, respectively. It is worth
noting that Diaphora achieves surprisingly high precision in the gcc-clang setting, particularly compared to
the cross-architecture setting. This may be attributed to the fact that compilers gcc and clang employ similar
compilation optimization algorithms, resulting in similar assembly code and abstract syntax tree (AST) structures.
However, since Asteria is not trained on a cross-compiler dataset, it exhibits relatively lower precision compared
to Diaphora. Although the precision performances of the methods vary in diferent compiler combination settings,
a consistent trend can be observed. Speciically, higher precision is observed in the gcc-clang setting, while lower
precision is observed in the gcc-icc and clang-icc settings, except for Safe. This can be attributed to the fact that
the icc compiler employs more aggressive code optimizations, resulting in dissimilar assembly code compared
to the other compilers. Overall, the results of the cross-compiler evaluation demonstrate the efectiveness of
Asteria-Pro in detecting function similarity across diferent compilers and highlight its superior performance
compared to the baseline methods.

Answer to RQ1: Asteria-Pro demonstrates superior accuracy in both Task-C and Task-V. In Task-C,
dominant model in Asteria-Pro demonstrates the best classiication performance by producing the
highest AUC (0.997). Regarding Task-V, Asteria-Pro outperforms other baseline methods by a large
margin in MRR, Recall@Top-1, and Recall@Top-10. In particular, Asteria-Pro has 172%, 236%, 147%
higher MRR, Recall@Top-1, Recall@Top-10 than the best baseline methods. Compared with Asteria,
Asteria-Pro manages to improve it for Task-V with 23.71% higher MRR, 36.4% higher Recall@Top-1,
and 7.2% higher Recall@Top-10. In a cross-compiler setting, Asteria-Pro continues to outperform
baseline methods by a signiicant margin. All BCSD methods exhibit higher accuracy in the gcc-clang
pairing compared to the gcc-icc or clang-icc pairings, likely because the icc compiler tends to emit highly
optimized assembly code.
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Fig. 12. Performance Comparison of All Methods on Task-V
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8.6 Performance Comparison (RQ2)

In this section, the detection time of function similarity for all baseline approaches andAsteria-Pro are measured.
Since the DK-based preiltration and DK-based re-ranking modules are intended to enhance performance in
Task-V, we only count the timings in Task-V. In task-V, given a source function, methods extract the function
features of source and all candidate functions, which is referred to as phase 1. Next, the extracted function features
are subjected to feature encoding and encoding similarity computation to determine the inal similarities, which
is referred to as phase 2.

As shown in Figure 12a, we calculate the average feature extraction time for each function. The x-axis depicts
extraction time, while the y-axis lists various extraction methods. During feature extraction for one single
function, Asteria-Pro, Asteria, and Diaphora all execute the same operation (i.e., AST extraction), resulting
in the same average extraction time. Since AST extraction requires binary disassembly and decompilation, it
requires the most time compared to other methods. Trex requires the least amount of time for feature extraction,
which is less than 0.001s per function, as code disassembly is the only time-consuming activity.

Figure 12b illustrates the average duration of a single search procedure for various methods. The phases 1 and
2 of a single search procedure are denoted by distinct signs. Due to its eicient iltering mechanism, Asteria-Pro
requires the least amount of time (58.593s) to complete a search. Due to its extensive pre-training model encoding
computation, Trex is the most time-consuming algorithm. Asteria-Pro cuts search time by 96.90%, or 1831.36
seconds, compared to Asteria (1889.96 seconds).

Answer to RQ2: Asteria-Pro costs the least average time to accomplish task-V. Compared with Asteria,
Asteria-Pro cuts search time by 96.90% by introducing the iltering module.

Table 5. Accuracy of Diferent Module Combination

Module Combination MRR Recall@Top-1 Recall@Top-10 Average Time(s)

Pre-iltering + Asteria 0.824 0.764 0.929 57.8
Asteria + Reranking 0.882 0.864 0.910 1889.8

8.7 Ablation Experiments (RQ3)

To demonstrate the progresses made by diferent modules of DK-based iltration and DK-based re-ranking, we
conduct ablation experiments by evaluating the diferent module combinations in Asteria-Pro. The module
combinations are Pre-iltering + Asteria and Asteria + Re-ranking. The two module combinations performs Task-V
and the results are shown in Table 5. For Asteria + Re-ranking, the top 20 similarity detection results are re-ranked
by the Re-ranking module.

8.7.1 Filtration Improvement. Compared to Asteria, the integration of pre-iltering improves MRR, Recall@Top-1,
and Recall@Top-10 by 12.26%, 16.29%, and 5.93%, respectively. In term of eiciency, it cuts search time by 96.94%.
The Pre-iltering + Asteria combination performs better than Asteria + Re-ranking in terms of Recall@Top-10 and
time consumption. It generates a greater Recall@Top-10 because it ilters out a large proportion of highly rated
non-homologous functions.

8.7.2 Re-ranking Improvement. Compared to Asteria, the integration of Re-ranking module improves MRR,
Recall@Top-1, and Recall@Top-10 by 20.16%, 31.51%, and 3.76%, respectively. In terms of eiciency, it costs
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Table 6. Integration of Pre-Filtration and Re-Ranking Modules with Alternative BCSD Techniques. We denote the integration
with BCSD method X as X-I.

Methods Trex Trex-I Gemini Gemini-I Safe Safe-I Diaphora Diaphora-I Asteria Asteria-Pro

MRR 0.310 0.547 0.334 0.775 0.015 0.533 0.020 0.772 0.734 0.908

Recall@Top-1 0.192 0.377 0.266 0.722 0.003 0.484 0.018 0.711 0.657 0.896

Recall@Top-10 0.579 0.881 0.488 0.865 0.015 0.603 0.027 0.878 0.877 0.940

average additional 0.13s for re-ranking, which is negligible. Compared to Pre-iltering + Asteria, re-ranking module
contributes to an increase in MRR and Recall@Top-1 by enhancing the rank of homologous functions.

8.7.3 Embedding Baseline Methods. We demonstrate the generalizability of innovative BCSD enhancement
framework, by integrating our two new components, pre-iltering and re-ranking, with other baseline BCSD
methods. Speciically, we apply all the baseline methods to compute the similarity scores between the remaining
functions and the source function after pre-iltering. Subsequently, we rank the remaining functions in descending
order based on their similarity scores and select the top 50 functions for re-ranking. The inal similarity score is
obtained by combining the re-ranking score and the score generated by the baseline methods. Using the inal
similarity score, we determine the rankings of the top 50 candidate functions and calculate three metrics, namely
MRR, Recall@Top-1, and Recall@Top-10. Table 6 presents a comparison of the original and integrated versions of
the baseline methods, with the baseline method names listed in the irst row and their corresponding integrated
versions in the next column, such as Trex-I for the integrated version of Trex. The second to fourth rows provide
the values of diferent metrics, namely MRR, Recall@Top-1, and Recall@Top-10.

The accuracy of the baseline methods is signiicantly improved by the addition of our two components, with
Diaphora-I in particular showing a substantial increase in MRR from 0.02 to 0.772. We manually analyzed the
outputs of Diaphora andDiaphora-I to understand the reason for the improved ranking of homologous functions.
We found that while Diaphora tends to assign high similarity scores to homologous functions, it also assigns high
scores to numerous non-homologous functions, which lowers the ranking of homologous functions. Speciically,
we found that the average score diference between the highest score (i.e., score of top 1) and the score assigned to
the homologous function is only 0.11. By incorporating reranking scores into the inal scores, Diaphora-I places
a higher emphasis on homologous functions, resulting in improved ranking. If homologous functions are present
in the top 50 before re-ranking, they are mostly ranked at the top. Safe-I also shows improved accuracy, although
not as substantial as Diaphora-I, as Safe tends to rank homologous functions outside the top 50, reducing the
impact of reranking.
The enhancement framework also efectively enhances the accuracy of Asteria. Speciically, Asteria-Pro

achieves very high MRR and Recall@Top-1, with a notable margin compared to other integrated versions of
baseline methods. The high accuracy of Asteria-Pro enables it to generate more reliable search results, which
can signiicantly reduce the eforts required for vulnerability conirmation when applied to bug search tasks.

Answer to RQ3: The iltering signiicantly cuts the calculation time by 96.94%, and increase precision
slightly. Re-ranking improves MRR, Recall@Top-1, and Recall@Top-10 by 20.16%, 31.51%, and 3.76%,
respectively, with negligible time costs. Our enhancement framework, which embeds the BCSD method
with pre-iltering and re-ranking modules, has demonstrated a signiicant improvement in the accuracy
of other baseline methods as well.
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Table 7. Capacity to Filter of Various Filtering Thresholds.

���� # Filtered Function Recall

0.1 9666.7 0.9813
0.2 9734.1 0.9808
0.3 9777.4 0.9791
0.4 9793.5 0.9773
0.5 9805.5 0.9737

8.8 Configurable Parameter Sensitivity Analysis (RQ4)

Asteria-Pro has two sets of conigurable parameters: the iltering threshold ���� in the pre-iltering algorithm,
and the weight values in Equation 15 for the inal precision score. In our evaluation, we analyze the impact of
these parameters on Asteria-Pro’s performance by testing diferent values of ���� for pre-iltering and varying
weight combinations for the inal precision score.

8.8.1 Diferent Filtering Threshold. In Algorithm 1, the threshold ���� determines the number of functions that
are iltered out. We evaluate the eicacy of the iltering module by utilizing various ���� values, and the results
are presented in Table 7. The threshold values range from 0.1 to 0.5 in the irst column, where a higher threshold
value suggests a more severe selection of the similarity function. The second column indicates the number of
functions omitted by the ilter, while the third column displays the recall rate in the ilteration results. As the
threshold value increases, the recall rate declines and the number of iltered-out functions grows. We use 0.1 as
our threshold value for two key reasons: a) the high recall rate of iltering results is advantageous for subsequent
homologous function detection, and b) there is no signiicant diference in the number of functions that are
iltered out.

Table 8. Accuracy of Asteria-Pro with Various Weight Combinations in Equation 15.

� � MRR Recall@Top-1 Recall@Top-10

0.0 1.0 0.901 0.890 0.930
0.1 0.9 0.908 0.896 0.940

0.2 0.8 0.905 0.893 0.938
0.3 0.7 0.902 0.890 0.937
0.4 0.6 0.900 0.889 0.935
0.5 0.5 0.899 0.887 0.934
1.0 0.0 0.824 0.764 0.929

8.8.2 Weights in Re-ranking. We conducted a sensitivity analysis of diferent weight values in Equation 16.
The evaluation results are presented in Table 8. The irst two columns display the combinations of two distinct
weights, � and � , from Equation 16. The last three columns give the values of various metrics, including MRR,
Recall@Top-1, and Recall@Top-10.

We did not test all weight combinations as the accuracy metrics consistently decreased with an increase in � .
As shown in the table, when � = 0.1 and � = 0.9, Asteria-Pro has the best accuracy. The last column sets � to
0.0, meaning the re-ranking score is not included in the inal similarity calculation. Therefore, the results are
consistent with the combination "Pre-iltering + Asteria" in Section 8.7.
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Table 9. Vulnerability Dataset

Software CVE # Disclosure Years Vulnerable Version Range

OpenSSL 22 2013∼2016
[1.0.0, 1.0.0s]
[1.0.1, 1.0.1t]
[1.0.2, 1.0.2h]

Busybox 10 2015∼2019 [0.38, 1.29.3]
Dnsmasq 14 20{15,17,20,21} [2.42, 2.82], 2.86
Lighttpd 10 20{08,10,11,13,14,15,18} [1.3.11, 1.4.49]
Tcpdump 36 2017 [3.5.1, 4.9.1]

Answer to RQ4: The pre-iltering module performs best with a iltering threshold value of 0.1. This
threshold allows Asteria-Pro to ilter out 96.67% of non-homologous functions per search, while achiev-
ing a recall rate of 98.13%. Regarding the re-ranking score, we found that non-zero weight values have a
relatively small efect on the inal accuracy of Asteria-Pro. However, incorporating the re-ranking score
signiicantly improves the precision of the tool.

8.9 Real World Bug Search (RQ5)

To assess the eicacy of Asteria-Pro, we conduct a massive real-world search for bugs. To accomplish this, we
obtain irmware and compile vulnerability functions to create a irmware dataset and a vulnerability dataset.
Utilizing vulnerability dataset, we then apply Asteria-Pro to detect vulnerable functions in the irmware dataset.
To conirm vulnerability in the resulting functions, we design a semi-automatic method for identifying vulnerable
functions. Through a comprehensive analysis of the results, we discover intriguing facts regarding vulnerabilities
existed in IoT irmware.

8.9.1 Dataset Construction. In contrast to our prior work, we expand both the vulnerability dataset and the
irmware dataset for a comprehensive vulnerability detection evaluation.

Vulnerability Dataset. The prior vulnerability dataset of 7 CVE functions is enlarged to 90, as shown in
Table 9. Vulnerability information is primarily gathered from the NVD website [11]. As shown in the irst column,
the vulnerabilities are collected from widely used open-source software in IoT irmware, including OpenSSL,
Busybox, Dnsmasq, Lighttpd, and Tcpdump. In the second column, the number of software vulnerabilities is
listed. In the third column, the timeframe or speciic years of the disclosure of the vulnerability are listed. The
inal column describes the software version ranges afected by vulnerabilities. Note that the version ranges are
obtained by calculating the union of all versions mentioned in the vulnerability reports. As a result, Asteria-Pro
is expected to generate vulnerability detection results for all software versions falling within the speciied ranges.

Firmware Dataset. We download as much of irmware from six popular IoT vendors as we could, consisting
of Netgear [12], Tp-Link [15], Hikvision [9], Cisco [4], Schneider [14], and Dajiang [6] as shown in irst column of
Table 10. These irmware are utilized by routers, IP cameras, switches, and drones, all of which play essential parts
in our life. The second column shows the irmware numbers, which range from 7 to 548. The third and fourth
columns gives numbers of binaries and functions after unpacking irmware by using binwalk. Note that the binary
number is the number of software selected to be in the vulnerability dataset. The ifth column to ninth column
gives the ive software numbers in all irmware vendors. OpenSSL and Busybox are widely integrated in these
IoT irmware as their numbers are close to those of the irmware. Through querying their oicial websites for
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Table 10. Firmware Dataset and Its Sotware Statistics. # denotes number.

Firmware Dataset Software Statistics
Vendor

Firmware # Binary # Function # OpenSSL Busybox Dnsmasq Lighttpd Tcpdump

Netgear 548 984 2,627,143 349 512 85 14 24
TP-Link 95 177 427,795 66 90 11 3 7
Hikvision 90 92 279,299 55 35 0 0 2
Cisco 29 66 60,396 23 26 10 5 2

Schneider 10 20 31,228 7 9 2 2 0
Dajiang 7 16 57,275 7 7 1 0 1

All 779 1,355 3,483,136 507 679 109 24 36

device type information, we ind that the majority of Hikvision vendor irmware is for IP cameras, whereas Cisco
vendor irmware is for routers. In particular, IP camera irmware incorporates less software than router irmware
because routers ofer more functionality. For example, the irmware of the Cisco RV340 router includes OpenSSL,
Tcpdump, Busybox, and Dnsmasq, whereas the majority of IP camera irmware only include OpenSSL. Similarly,
the majority of the irmware of Netgear and Tp-Link consists of routers, while Schneider and Dajiang’irmware
include specialized devices such as Ethernet Radio and Stabilizers.

8.9.2 Large Scale Bug Search. Asteria-Pro is employed to identify vulnerable homologous functions among
3,483,136 irmware functions by referencing 90 functions from the vulnerability dataset. Speciically, in order
to expedite the detection process, vulnerability detection is restricted to the same software between irmware
dataset and vulnerability dataset. For instance, the vulnerable functions disclosed in OpenSSL are utilized to
detect vulnerable homologous functions in OpenSSL in the irmware dataset. For each software � , we irst
extract features (i.e., ASTs and call graphs) of all functions in irmware dataset and vulnerable functions in
vulnerability dataset. For each vulnerability disclosed in � , the pre-iltration module uses the call graph to ilter
out non-homologous functions, followed by the Tree-LSTM model encoding all remaining functions as vectors.
Asteria-Pro then computes the AST similarity between the vulnerable function vectors and the irmawre
function vector. Asteria-Pro computes reranking scores based on the top 20 of AST similarities based on
similarity scores, since the evaluation demonstrates a very high recall in the top 20. As a inal step, Asteria-Pro
generates 20 candidate homologous functions for each � as a bug search result for each vulnerability. To further
reine the bug search results, we compute the average similarity score of homologous functions in Section 8.5 and
use it to eliminate non-vulnerable functions. In particular, the average similarity score of 0.89 is used to eliminate
3987 of 5604 results. We perform heuristic conirmation of vulnerability for the remaining 1617 results.

Vulnerability Conirmation Method. We devise a semi-automatic method for conirming the actual vulnera-
ble functions from the candidate homologous functions. The method makes use of the symbols and string literals
within the irmware binaries of the target. Speciically, we use unique regular expressions to match version
strings for each software and to extract function symbols from the software. The method is then comprised of
two distinct operations that correspond to two distinct vulnerable circumstances ��1, ��2.

• ��1. In this circumstances, the target binary contains version string (e.g., łOpenSSL 1.0.0až) and the symbol
of target function is not removed.
• ��2. Target binary contains version strings whereas the symbol of vulnerable homologous function is
removed.

The versions of software listed in Table 9 are easy to extract using version strings [27]. The descriptions of the
two conirmation operations ��1 and ��2 are as follows:
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Table 11. Numbers of Vulnerable Functions, Sotware, Firmware in Confirmation Results.

vendor
Vulnerable Function # Vulnerable Software # Vulnerable

Firmware #OpenSSL Busybox Dnsmasq Lighttpd Tcpdump All OpenSSL Busybox Dnsmasq Lighttpd Tcpdump All

Netgear 367 0 31 0 26 424 133 0 7 0 10 150 145 (26.46%)
TP-Link 394 9 0 2 5 410 36 3 0 2 5 46 36 (37.89%)
Hikvision 553 0 0 0 12 565 52 0 0 0 1 53 53 (58.89%)
Cisco 0 0 0 0 2 2 0 0 0 0 2 2 2 (6.90%)
Schneider 10 0 0 0 0 10 1 0 0 0 0 1 1 (10.00%)
Dajiang 70 0 0 0 1 71 7 0 0 0 1 8 7 (100.00%)

Total 1,394 9 31 2 46 1,482 229 3 7 2 19 260 244 (31.32%)
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Fig. 13. # of Vulnerable Functions Detected from Five Vendors

• ��1. For ��1, we conirm the vulnerable function based on the version and name of the target software.
In particular, a vulnerable function is conirmed when the following two conditions are met: 1) software
version is in vulnerable version range, 2) the vulnerable function name retains after elimination with
average similarity score.
• ��2. For ��2, if the software versions are in the range of vulnerable versions, we manually compare the
code between the CVE functions and remaining functions to conirm the vulnerability.

Results Analysis. In Table 11, we tally the number of vulnerable functions, software, and irmware upon
vulnerability conirmation. The irst column contains the names of diferent vendors. The second through sixth
columns show the amount of vulnerable functions in various software, while the seventh column indicates the
total number of vulnerable functions across all vendors. The eighth through twelfth columns display the amount
of vulnerable software binaries in various software, while the thirteenth column provides the total number of
vulnerable software binaries. According to the seventh column of Table 10, there are a total of 1,482 vulnerable
functions. 1456 are conirmed by ��1, whereas 26 are conirmed by ��2. For a total of 1,456 ��1 vulnerable
functions, 1,377 vulnerable functions rank irst and 79 vulnerable functions rank second. ��2 is performed on
47 detection results, of which 26 are conirmed. the 21 unconirmed detection results can be attributed to two
reasons. Firstly, 18 of them were due to the fact that the target binaries detected did not contain any of the target
vulnerable functions. For example, we were unable to detect the vulnerable function ‘EVP_EncryptUpdate’ of
CVE-2016-2106 from the ‘libssl.so’ library of OpenSSL since it exists in the ‘libcrypto.so’ library. Secondly, 3 of
the unconirmed results were ranked in the top 20 but were subsequently iltered out by the similarity threshold
used in real world bug search setting. A large proportion of vulnerable functions are found in the OpenSSL
software used by the three vendors. The number of vulnerable software is consistent with this circumstance.
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Fig. 14. The Distribution of CVEs for Diferent OpenSSL Versions in vendors Netgear, TP-Link, Hikvision from let to right.

The inal column shows the number of irmware containing at least one vulnerable function, together with its
proportion of total irmware. Every Dajiang irmware contains at least one CVE vulnerability because all OpenSSL
components used in irmware are vulnerable. In addition, Hikvision is detected to have a large proportion of
vulnerable irmware (58.89%). To inspect the CVE vulnerable function distribution, we plot the top 10 CVEs and
their distributions in ive vendors except Cisco in Figure 13, since Cisco takes additional two CVEs.

• Top 10 CVE Analysis. Figure 13 demonstrates the top 10 CVE distribution in various vendors. The total
number of discovered CVE vulnerabilities decreases from left to right along the x-axis. Except for CVE-
2015-0287, all of the top 10 CVE vulnerabilities are discovered in every Dajiang irmware. This is because
Dajiang utilizes an outdated version of OpenSSL 1.0.1h that contains numerous vulnerable functions [13].
Although Hikvision irmware has the third largest number of irmware, it has the most vulnerable functions
in our experiment settings. The reason for this is that Hikvision irmware heavily uses OpenSSL-1.0.1e
(184) and OpenSSL-1.0.1l (401) versions, both of which contain a large number of vulnerabilities. Finding:
Since they typically adopt the same vulnerable software version, it is highly plausible that irmware from
the same vendor and released at the same period contains identical vulnerabilities. Security analysts can
quickly narrow down the vulnerability analysis based on the irmware release date.
• CVE and Version Analysis. Figure 14 depicts the distribution of vulnerable OpenSSL versions for various
CVEs from various vendors. where the x-axis represents the version and the y-axis represents the CVE ID
associated with the vulnerability. Each square in each subigure indicates the number of OpenSSL versions
that are vulnerable and contain the corresponding CVE along the y-axis. The number is greater the lighter
the red colour. The left subigure demonstrates that OpenSSL 1.0.2h is widely used by Netgear, resulting in
a signiicant number of CVE-2016-2180 vulnerabilities (92). Additionally, OpenSSL version 1.0.1e exposes
the majority of CVEs listed on the y-axis, which may increase the device’s attack surface. The TP-Link
irmware incorporates OpenSSL version 1.0.1e, resulting in brighter hues. Hikvision irmware utilizes
versions 1.0.1e and 1.0.1l, which are vulnerable to a number of CVEs. Comparing vulnerability distribution
in OpenSSL version 1.0.1e among diferent vendors reveals inconsistencies in the existence of vulnerabilities.
For instance, CVE-2016-2106 is present in OpenSSL 1.0.1e from Hikvision but not from Netgear and TP-Link.
Finding: Despite using the same version of software, various vendor irmware behaves diferently in terms
of vulnerability since they can tailor the software to the device’s speciic capabilities.
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• CVE-2016-2180 Analysis. The CVE-2016-2180, which is a remoteDenial-of-Service law caused by received
forged time-stamp ile, impacting OpenSSL 1.0.1 through 1.0.2h, exists in 207 irmware. NETGEAR is
responsible for 117 of these, as it deploys 92 OpenSSL 1.0.2h out of a total of 548 irmware. NETGEAR
incorporated an extra nine OpenSSL 1.0.2 series software and sixteen OpenSSL 1.0.1 series software. The
vulnerable version 1.0.2h was released in May 2016, and by comparing their timestamps, we determined
that OpenSSL 1.0.2h was integrated into irmware between 2016 and 2019. Finding: Even after their
vulnerabilities have been discovered, the vulnerable versions of software continue to be used for irmware
development.

Based on the conirmation results, Asteria-Pro manages to detect 1,482 vulnerable functions out of 1617 bug
search results, indicating that Asteria-Pro achieves a high vulnerability detection precision of 91.65% under our
experiment settings. By randomly selecting 1,000 of 5,604 bug search results, we manually validate the existence
of vulnerabilities in software binaries in order to calculate the recall. Among 1000 bug search results, 205 target
function are conirmed to be vulnerable by checking software versions and the vulnerable functions. Targeting
205 vulnerable functions, Asteria-Pro detects 53 of them, representing a recall rate of 25.85%.

Finding Inlined Vulnerable Code. During the analysis of mismatched cases, in which the target homologous
functions are not in the top ranking position, we observe that the top-ranked functions contain the same vulnerable
code. We use CVE-2017-13001 as an illustration of inlined vulnerable code detection. CVE-2017-13001 is a bufer
over-read vulnerability in the Tcpdump nfs_printfh function prior to version 4.9.2. After a conirmation operation
��2, Asteria-Pro reports a single function, parsefh as being vulnerable. We manually compare the decompiled
code of the parsefh function to the source code of nfs_printfh in tcpdump version 4.9.1 (i.e., vulnerable version).
Figure 15 demonstrates that the source code of nfs_printfh (on the left) and the partial code of parsefh (on the
right) are consistent. We designate codes with apparently identical semantics with distinct backdrop hues. In
other words, during compilation, function nfs_printfh is inlined into function parsefh. As a result, the function
parsefh contains CVE-2017-13001 vulnerable code, and Asteria-Pro manages to identify the inlined vulnerable
code. Asteria-Pro has detected an additional eight instances of inlined vulnerable code out of 20 functions in
vulnerable circumstance ��2.

The preceding analysis and conclusions are constrained by the dataset we constructed, which ofers security
analysts some recommendations for the security analysis of irmware.

Answer to RQ5.We employ 90 CVE vulnerabilities to search for bugs in 3,483,136 real irmware functions.
Asteria-Pro detects 1,482 vulnerable functions with a high level of precision of 91.65%. In addition,
the capability of Asteria-Pro to identify inlined vulnerable code is stated and illustrated in detail. In
conclusion, Asteria-Pro generates bug search results with a high degree of conidence, thereby reducing
analysis labor by a substantial margin.

9 THREATS TO VALIDATION.

Threats to internal validity come from these aspects.

• We use vulnerable version ranges collected from the NVD website to aid vulnerability conirmation in a
real-world bug-search experiment. The vulnerable version ranges may be inaccurate, and vulnerabilities
may be missed or incorrectly stated. We will conduct additional veriication of the susceptible version
ranges by conirming the existence of vulnerable code.
• We adopt IDA Pro to decompiling and generate ASTs from the functions in binaries. As pointed by study [47],
accurate decompiling and binary analysis is not easy. The errors in AST generation may afect the AST
similarity calculation and further afect the results.
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1 {

2 ...

3 if (ndo ->ndo_uflag) {

4 u_int i;

5 char const *sep = "";

6 ND_PRINT((ndo, " fh["));

7 for (i=0; i<len; i++) {

8 ND_PRINT((ndo, "%s%x", sep, dp[i]));

9 sep = ":";

10 }

11 ND_PRINT ((ndo , "]"));

12 return;

13 }

14 Parse_fh((const u_char *)dp, len, &fsid, &ino,

15 NULL, &sfsname, 0);

16 if (sfsname) {

17 ...

18 strncpy(temp, sfsname, stringlen);

19 temp[stringlen] = ’0’;

20 spacep = strchr(temp, ’ ’);

21 if (spacep)

22 *spacep = ’0’;

23 ND_PRINT((ndo, " fh %s/", temp));

24 } else {

25 ND_PRINT((ndo, " fh %d,%d",

26 fsid.Fsid_dev.Major, fsid.Fsid_dev.Minor));

27 }

28 if(fsid.Fsid_dev.Minor == 257)

29 ND_PRINT((ndo, "%s", fsid.Opaque_Handle));

30 else

31 ND_PRINT((ndo, "%ld", (long) ino));

32 }

(a) Source Code of Vulnerable Function.

1 {

2 ...

3 if ( v8 )

4 {

5 printf(" fh[");

6 if ( v4 ){

7 for ( i = 0; i < v4; ++i ){

8 v11 = *( _DWORD *)&v3[4 * i];

9 printf("%s%x", v9, v11);

10 v9 = ":";

11 }

12 }

13 putchar (93);

14 return &v3[v5];

15 }else{

16 Parse_fh(v3, v4, v13, &v16, 0, &src, 0);

17 if ( src ){

18 strncpy(temp_5711, src, 0x40u);

19 byte_B9E04 = 0;

20 v12 = strchr(temp_5711, 32);

21 if ( v12 )

22 *v12 = 0;

23 printf(" fh %s/", temp_5711);

24 }else{

25 printf(" fh %d,%d/", v13[1], v13[0]);

26 }

27 if ( v13[0] == 257 )

28 printf("%s", v14);

29 else

30 printf("%ld", v16);

31 return &v3[v5];

32 }

(b) Part of Decompiled Code in Detected Function.

Fig. 15. Inlined Vulnerable Function in Detected Function. The semantics of the code with the same background color are
same.

Threats to external validity rise from following issue.

• In practice, irmware binaries may be compiled with distinct compiler (e.g., clang), compiler version, and
optimization level for special-purpose compilation. Diferent compilation conigurations alter the AST
structures and call graphs, sometimes leading in lower scores for homologous functions.
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10 DISCUSSION

10.1 How does the re-ranking module solve the function inline issues?

Inlining functions is a common optimization technique used by compilers to improve the performance of code
execution. The decision of whether or not to inline a function is based on various factors, including the size of the
function, the frequency of function calls, and the complexity of the code. In general, inlining smaller functions
tends to be more beneicial than inlining larger functions.

When smaller functions being inlined, the re-ranking module in Asteria-Pro will be capable of handling inline
issues by considering both function similarities and the match of callee relational structures. Speciically, the
module matches all callee functions between the source function and target functions, which allows for high
similarity even if one callee function is inlined to the target function. This is because the target function can
still maintain a relatively high similarity with the source function even after incorporating inlined code, and
the un-inlined callee functions still contribute to the inal similarity score. As a result, Asteria-Pro exhibits high
metric values (i.e., recall and MRR) in our evaluation based on the contribution of the target function code
and all its callee functions. Through manual analysis of search results in real-world bug detection, we have
also demonstrated that Asteria-Pro is capable of inding homologous vulnerable functions that contain inlined
function code.

10.2 What is the design diference between pre-filtering, re-ranking and SCA tools.

Some software composition analysis (SCA) tools have adopted similar feature when comparing to the pre-iltering
and re-ranking module of Asteria-Pro. For example, Modx [70] matches string literals and whole call graph
between two libraries, and LibDB [61] adopts string literals and exported function names to measure the similarity
of libraries. The usages of string literals and call graphs are quite straightforward.

However, we would like to highlight some conceptual-level diferences between our approach and these prior
works. While the use of string literals and call graphs is indeed straightforward, it can be challenging to apply
them to function matching, particularly when functions lack string literals or are leaf nodes in call graphs.
Additionally, callee functions of a target function may not be exported functions, meaning that function names
are removed and cannot be used for matching.
To address these challenges, our approach difers from SCA methods in several key ways. Firstly, we utilize

the local context extracted from call graphs in both the pre-iltering and re-ranking modules to eiciently
remove non-homologous functions and conirm homologous ones. Secondly, we introduce an algorithm called
łUpRelation" to utilize caller relations from call graphs in pre-iltering. The algorithm leverages the genealogist of
parent nodes to identify potential homologous functions. It achieves this by matching the genealogist of parent
nodes and retaining the child nodes of the matched parent nodes. This approach is particularly useful when the
target function is a leaf node in the call graph and does not contain any string literals. Lastly, our re-ranking
module considers both structural and semantic similarities of functions, resulting in more accurate ranking of
homologous functions. Speciically, the re-ranking module uses Asteria to calculate similarities when callee
functions are not exported functions.

10.3 What will Asteria-Pro perform on cross-optimization setings?

Although we did not evaluate the performance of Asteria-Pro in cross-optimization settings, it is worth
discussing the potential impact of such settings on the performance of our method. Cross-optimization refers
to the situation where the training and testing sets are compiled with diferent optimization settings. This is a
common scenario in practice as diferent developers may use diferent optimization lags, or the same developer
may use diferent optimization levels for diferent releases. Previous studies have shown that cross-optimization
can signiicantly afect the accuracy of BCSD methods, as the semantic features extracted from the binary code

ACM Trans. Softw. Eng. Methodol.



Asteria-Pro: Enhancing Deep-Learning Based Binary Code Similarity Detection by Incorporating Domain Knowledge • 35

may change depending on the optimization settings. For instance, in a study by Liu et al. [46], the accuracy of a
state-of-the-art BCSD method dropped from 95.3% to 46.2% when tested in cross.
In the case of our method, Asteria-Pro, which is based on the Tree-LSTM architecture, the impact of cross-

optimization on its performance is likely to be substantial. This is because Tree-LSTM model is sensitive to
AST structure and summarizes semantics by identifying structure patterns. Therefore, if the source and target
functions are compiled with diferent optimization settings, the Tree-LSTM may not be capable to summarize the
expected semantic from substantial AST structure transformation and thus produce inaccurate results.
Moreover, training our model on cross-optimization settings would require signiicant computational re-

sources and time, which may not be feasible in practice. Therefore, we have not evaluated our method on
cross-optimization settings in this study. Nevertheless, we acknowledge that cross-optimization is an essential
consideration for evaluating Asteria-Pro’s generalizability, and we encourage future studies to investigate this
aspect further.

11 RELATED WORKS

11.1 Feature-based Methods

When considering the similarity of binary functions, the most intuitive way is to utilize the assembly code content
to calculate the edit distance for similarity detection between functions. Khoo et al. concatenated consecutive
mnemonics from assembly language into the N-grams for similarity calculation [43]. David et al. proposed
Trecelet, which concatenates the instructions from adjacent basic blocks in CFGs for similarity calculation [24].
Saebjornsen et al. proposed to normalize/abstract the operands in instructions, e.g., replacing registers such as eax
or ebx with string łregž, and conduct edit distance calculation based on normalized instructions [56]. However,
binary code similarity detection methods based on disassembly text can not be applied to cross-architecture
detection since the instructions are typically diferent in diferent architectures. The works in [55], [19], [31], [67]
utilize cross-architecture statistical features for binary code similarity detection. Eschweiler et al. [31] deined
statistical features of functions such as the number of instructions, size of local variables. They utilized these
features to calculate and ilter out candidate functions. Then they performed a more accurate but time-consuming
calculation with the graph isomorphism algorithm based on CFGs. Although this method takes a pre-iltering
mechanism, the graph isomorphism algorithm makes similarity calculation extremely slow. To improve the
computation eiciency, Feng et al. proposed Genius which utilizes machine learning techniques for function
encoding [33]. Genius uses the statistical features of the CFG proposed in [31] to compose the attributed CFG
(ACFG). Then it uses a clustering algorithm to calculate the center points of ACFGs and forms a codebook
with the center points. Finally, a new ACFG is encoded into a vector by computing the distance with ACFGs in
the codebook and the similarity between ACFGs is calculated based on the encoded vectors. But the codebook
calculation and ACFG encoding in Genius are still ineicient. Xu et al. proposed Gemini based on Genius to
encode ACFG with a graph embedding network [66] for improving the accuracy and eiciency. However, the
large variance of binary code across diferent architectures makes it diicult to ind architecture-independent
features [26].

11.2 Semantic-based Methods

For more accurate detection, semantic-based features are proposed and applied for code similarity detection. The
semantic-based features model the code functionality, and are not inluenced by diferent architectures. Khoo
et al. applied symbolic execution technique for detecting function similarity [49]. Speciically, they obtained
input and output pairs by executing basic blocks of a function. But the input and output pairs can not model the
functionality of the whole function accurately. Ming et al. leveraged the deep taint and automatic input generation
to ind semantic diferences in inter-procedural control lows for function similarity detection [53]. Feng et al.
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proposed to extract conditional formulas as higher-level semantic features from the raw binary code to conduct
the binary code similarity detection [32]. In their work, the binary code is lifted into a platform-independent
intermediate representation (IR), and the data-low analysis is conducted to construct formulas from IR. Egele
et al. proposed the blanket execution, a novel dynamic equivalence testing primitive that achieves complete
coverage by overwriting the intended program logic to perform the function similarity detection [30]. These
semantic-based features capture semantic functionalities of a function to reduce the false positives. Pei et al.
proposes Trex [54], applying a transfer-learning-based framework to automate learning execution semantics
from functions’ micro-traces, which are forms of under-constrained dynamic traces. However, the methods above
depend heavily on emulation or symbolic execution, which are not suitable for program analysis in large-scale
IoT irmware since the emulation requires peripheral devices [20, 35, 73] and symbolic execution sufers from the
problems of path explosion.

11.3 AST in Source Code Analysis

Since the AST can be easily generated from source code, there has been research work proposed to detect source
code clone based on AST. Ira D. Baxter et al. proposed to hash ASTs of functions to buckets and compare the
ASTs in the same bucket [17] to ind clones. Because the method proposed in [17] is similar to Diaphora which
hash ASTs, we only perform a comparative evaluation with Diaphora. In addition to the code clone detection,
AST is also used in vulnerability extrapolation from source code [68, 69]. In order to ind vulnerable codes that
share a similar pattern, Fabian et al. [69] encoded AST into a vector and utilized the latent semantic analysis [25]
to decompose the vector to multiple structural pattern vectors and compute the similarity between these pattern
vectors. Yusuke Shido et al. proposed an automatic source code summary method with extended Tree-LSTM [58].

12 CONCLUSION

In this work, we present Asteria-Pro, a domain knowledge-enhanced BCSD tool designed to detect homolo-
gous vulnerable functions on a broad scale in eicient and accurate manner. Asteria-Pro introduces domain
knowledge before and after deep learning model-based function encoding to eliminate a large proportion of
non-homologous functions and score homologous functions higher, separately. The pre-iltering module makes
extensive use of function name information prior to function encoding to accelerate the function encoding. The
function call structure is utilized by the re-ranking module following function encoding to calibrate the encoding
similarity scores. Asteria-Pro is capable of inding homologous functions rapidly and precisely, according to
a comprehensive comparison with existing state-of-the-art research. Furthermore, Asteria-Pro manages to
ind 1,482 vulnerable functions in the real-world irmware bug search experiment with high precision of 91.65%.
The search results for CVE-2017-13001 demonstrate Asteria-Pro successfully inds inlined vulnerable code.
Asteria-Pro can aid in detecting vulnerabilities from large-scale irmware binaries to mitigate the attach damage
on IoT devices.
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